Part Number Hot Search : 
7G064ID NPT2020 RL756PT CY62136V 32A1235 SR1620C X106K0 TFDU5307
Product Description
Full Text Search
 

To Download S5D2400X Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 S5D2400X
Data Sheet
Revision 1.0
RECORD OF REVISIONS
Rev. No 0.0 1.0 Date 2003/10 2004/09 39 42,43 Page First Release 5.12 Display Region Masking Control block addition Register Map addition (0x0007~0x0009, 0x000E~0x000F) Description of Change
Table of Contents
1 Overview ....................................................................................................................................... 7 1.1 Overview................................................................................................................................. 7 1.2 Applications ........................................................................................................................... 7 1.3 Features ................................................................................................................................ 7 2 Pin Information .............................................................................................................................. 9 2.1 Pin Configuration..................................................................................................................... 9 2.2 Pin Description ..................................................................................................................... 10 3 Functional Block Diagram............................................................................................................. 12 3.1 System Block Diagram.......................................................................................................... 13 3.2 Functional Block Diagram...................................................................................................... 17 4 Solution Circuit for Application ...................................................................................................... 18 5 Functional Description................................................................................................................... 19 5.1 Clock Systems and System Operation Modes......................................................................... 19 5.2 De-Interlace.......................................................................................................................... 21 5.3 Timing Generator .................................................................................................................. 22 5.4 Scaler.................................................................................................................................. 23 5.5 Boost-Up.............................................................................................................................. 23 5.6 OSD (On-Screen Display)...................................................................................................... 24 5.7 Gamma................................................................................................................................ 33 5.8 Contrast Control.................................................................................................................... 34 5.9 Dither................................................................................................................................... 34 5.10 Test Pattern Generator (TPG)............................................................................................... 35 5.11 I2C Host Interface Protocol................................................................................................... 37 5.12 Display Region Masking Control ........................................................................................... 39 6 Register Map............................................................................................................................... 40 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Global Control Registers ........................................................................................................ 40 Timing Generator Control Registers ........................................................................................ 44 De-Interlace Control Registers ................................................................................................ 50 Image Scaling Control Registers............................................................................................. 53 Advanced Color Contrast Enhancement (ACE) Control Registers............................................... 55 Global Image Gain & Offset Control Register ........................................................................... 62 OSD Control Registers .......................................................................................................... 66 Gamma Correction Control Register........................................................................................ 76 OSD RAM Control Registers .................................................................................................. 79
Table of Contents
(Continued)
7 Electrical Specification................................................................................................................. 80 7.1 7.2 7.3 7.4 Absolute Maximum Ratings ................................................................................................... 80 Recommended Operation Conditions ...................................................................................... 80 DC Electrical Characteristics ................................................................................................. 81 AC Electrical Characteristics ................................................................................................. 82
8 Package Dimension..................................................................................................................... 84 8.1 100-TQFP-1414 .................................................................................................................... 84 9 Fonts ...................................................................................................................................... 85
Figure of Contents
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 S5D2400X Pin Configuration ................................................................................... 9 S5D2400X System Block Diagram (ITU-R BT.656 Input to Single RGB Output) ......... 13 S5D2400X System Block Diagram (ITU-R BT.656 Input to Dual RGB Output)............ 14 S5D2400X System Block Diagram (ITU-R BT.601 Input to Single RGB Output) ......... 15 S5D2400X System Block Diagram (DVI Input to Single RGB Output) ....................... 16 S5D2400X Functional Block Diagram .................................................................... 17 S5D2400X Solution Circuit for Application .............................................................. 18 Internal Clock System Diagram............................................................................. 19 OSD Font RAM................................................................................................... 25 OSD Display RAM............................................................................................... 26 OSD FONT Structure........................................................................................... 28 OSD Display RAM Structure ................................................................................ 28 OSD Position...................................................................................................... 29 OSD Multi Color Font Structure ............................................................................ 31 OSD Row Space................................................................................................. 32 Half Tone Block................................................................................................... 33 R-Channel Gamma Correction .............................................................................. 33 Error Diffusion Architecture................................................................................... 34 TPG Sync Signals............................................................................................... 35 Test Pattern Generation Method ........................................................................... 35 Built-in Test Patterns ........................................................................................... 36
PRELIMINARY DATASHEET
S5D2400X
1 OVERVIEW
1.1 OVERVIEW S5D2400X scaling image processor is a display SOC designed for TFT-LCD monitors and TV systems. This chip consists of Scaler, Deinterlace and ACE block. The chip receives the signal of digital RGB 24-bit or ITU-R BT.656/601 format, deinterlaces the signal and sends the single or dual channel digital data (24-bit or 48-bit). The chip provides the ACCE (Adaptive Color & Contrast Enhancement) function that minimizes color change and improves brightness function, and has the built-in filter that improves sharpness. The built-in OSD supports 512 ROM fonts of 12*18 matrix, and processes 28 RAM fonts. 1.2 APPLICATIONS * * * * * Multimedia LCD Monitors/TVs Digital TVs CRTs and Rear Projection TVs Plasma Displays Projection Displays
1.3 FEATURES * High-Quality Advanced Scaling - - * Fully Programmable Scale-Up Ratios Scale-up or down for Horizontal and Vertical
Built-in OSD for LCD Monitor - - 512 ROM Fonts 28 RAM Fonts
*
Economic Output Clock Source - - Built-In PLL Core External X-tal Device
* * *
Supports I2C Bus Host Interface R/G/B Gamma look-up table Dithering - 8 to 6 Dithering
7
PRELIMINARY DATASHEET
S5D2400X
*
Color & Contrast Management - - - - - Adaptive Contrast Control Adaptive Brightness Control Image Sharpness Control Color Compensation Boost Up Sub Zone
* *
Digital RGB input Video De-interlacing - - - ITU-R BT.656 Interfacing ITU-R BT.601 Interfacing Spatial Interpolation Filter
*
PKG Information - PKG: 100-TQFP-1414 (100TQFP)
*
Operating Conditions - - 1.8 Volts Core 3.3 Volts I/O
8
PRELIMINARY DATASHEET
S5D2400X
2 PIN INFORMATION
2.1 PIN CONFIGURATION
75 VDD3OP BO7 BO6 BO5 BO4 BO3 BO2 BO1 BO0 VSS3OP GO7 GO6 GO5 GO4 GO3 GO2 GO1 GO0 VDD2I RO7 RO6 RO5 RO4 RO3 RO2 76
PHSO PVSO PDEN PCKO TMD1 TMD0 SCAN DDEN DCKI VSS2I DHS DVS FLD GHS GVS GPO2 GPO1 GPO0 VDD2I BIO7 BIO6 BIO5 BIO4 BIO3 BIO2 70 60 51 50 BIO1 BIO0 VSS3OP GIO7 GIO6 GIO5 GIO4 GIO3 GIO2 GIO1 GIO0 VDD3OP RIO7 RIO6 RIO5 RIO4 RIO3 RIO2 RIO1 RIO0 VSS2I VI7 VI6 VI5 VI4 80 40
S5D2400X TFT-LCD Image Navigator
90
30
100 1
26 10 20 25
RO1 RO0 VSS2I MIFSEL I2CEN SCSN SCL SDA RSTN VDD3OP X1 X2 VSS3OP VSSDP VDDDP VBBP FILT VSSAP VDDAP VCK VDD2I VI0 VI1 VI2 VI3
Figure 1. S5D2400X Pin Configuration
9
PRELIMINARY DATASHEET
S5D2400X
2.2 PIN DESCRIPTION I/O Legend : I = Input O = Output P = Power G = Ground
Table 1. MCU Interface Pins Pin Name MIFSEL I2CEN SCSN SCL SDA GPO0 GPO1 GPO2 I/O I I I I I/O O O O Pin No 4 5 6 7 8 58 59 60 Description MCU I/F Logic Selection (Always High) I2C Enable Signal (Always High) Chip Select Signal. (Always High) Serial Bus Clock Serial Bus Data (I: Input Data, O: Output Data) General Purpose Output 0 General Purpose Output 1 General Purpose Output 2
Table 2. PLL Interface Pins Pin Name X1 X2 FILT I/O I O O Pin No 11 12 17 X-tal Input (Max 30 MHz) X-tal Output PLL External Loop Filter (Refer to the circuit diagram on Page 14.) Description
Table 3. Video Input Interface Pins Pin Name VCK VI[7:0] I/O I I Pin No 20 22~29 Description Input Clock for Video Mode (De-Interlace) ITU-R BT.656: Video Data Input Port ITU-R BT.601: Y Data Input Port Pull down by internal 70k resistors ITU-R BT.601: V-SYNC Input from Decoder ITU-R BT.601: H-SYNC Input from Decoder ITU-R BT.601: External FIELD Signal Input
GVS GHS FLD
I I I
61 62 63
10
PRELIMINARY DATASHEET
S5D2400X
Table 4. DVI Interface Pins Pin Name RSTN RIO[7:0] I/O I I/O Pin No 9 31 ~ 38 Description System Reset (Low Active) Input or Dual Output Port RED[7:0] ITU-R BT.601: UV Data Input Port Pull down resistors Input or Dual Output Port GREEN[7:0] Pull down resistors Input or Dual Output Port BLUE[7:0] Pull down resistors V-SYNC Input H-SYNC Input Input Clock Input Data Enable (Digital Input Mode)
GIO[7:0] BIO[7:0] DVS DHS DCK DDEN
I/O I/O I I I I
40 ~ 47 49 ~ 56 64 65 67 68
Table 5. Panel Interface Pins Pin Name RO[7:0] PCKO PDEN PVSO PHSO BO[7:0] GO[7:0] I/O O O O O O O O Pin No 1~2 95~100 72 73 74 75 77~84 86~93 Description Single Output Port RED[7:0] Output Clock Output Data Enable V-SYNC Output H-SYNC Output Single Output Port BLUE[7:0] Single Output Port GREEN[7:0]
Table 6. Test Pins Pin Name SCAN TMD0 TMD1 I/O I I I Pin No 69 70 71 Description Scan Enable Signal for test. Not use normal condition (Always Low) Test Mode Selection 0 (Always Low) Test Mode Selection 1 (Always Low)
11
PRELIMINARY DATASHEET
S5D2400X
Table 7. Supply Voltage and Ground Pins: 3.3 / 1.8 Volt Pin Name VSS2I VDD3OP VSS3OP VSSDP VDDDP VBBP VSSAP VDDAP VDD2I Pin Number 3, 30, 66 10, 39, 76 13, 48, 85 14 15 16 18 19 21, 57, 94 Internal ground 3.3V Output-Driver and Pre-Driver supply voltage Output-Driver and Pre-Driver ground PLL Digital ground 1.8V PLL Digital supply voltage PLL Bulk-Bias ground PLL Analog ground 1.8V PLL Analog supply voltage 1.8V Internal Supply voltage Description
Total Supply Voltage : 8 Pin (3.3V: 3 Pin, 1.8V: 3 Pin, PLL (1.8V): 2 Pin) Ground : 9 Pin (3.3V: 3 Pin, 1.8V: 3 Pin, PLL (1.8V): 2 Pin, Analog (Bulk-Bias 1.8V): 1 Pin)
12
PRELIMINARY DATASHEET
S5D2400X
3 FUNCTIONAL BLOCK DIAGRAM
3.1 SYSTEM BLOCK DIAGRAM ITU-R BT.656 Input to Single RGB Output System
RGB Output 18 DISPLAY PORT PHSO/PVSO/ PDEN/PCKO 24 LVDS or PANNEL
S5D2400X
* RGB Output 18-bit: RO2 - RO7 GO2 - GO7 BO2 - BO7
VCK Video Decoder 8 VI (ITU-R BT.656) OSC PORT HOST I/F PORT Deinterlacer
24-bit: RO0 - RO7 GO0 - GO7 BO0 - BO7
Video Input
X1 X-tal
X2
SCL
SDA
MCU
Figure 2. S5D2400X System Block Diagram (ITU-R BT.656 Input to Single RGB Output)
13
PRELIMINARY DATASHEET
S5D2400X
ITU-R BT.656 Input to Dual RGB Output System
RGB Output 48 DISPLAY PORT PHSO/PVSO/ PDEN/PCKO LVDS or PANNEL
S5D2400X
* RGB Output A Channel: RO0 - RO7 GO0 - GO7 BO0 - BO7
VCK Video Decoder 8 VI (ITU-R BT.656) OSC PORT HOST I/F PORT Deinterlacer
B Channel: RIO0 - RIO7 GIO0 - GIO7 BIO0 - BIO7
Video Input
X1 X-tal
X2
SCL
SDA
MCU
Figure 3. S5D2400X System Block Diagram (ITU-R BT.656 Input to Dual RGB Output)
14
PRELIMINARY DATASHEET
S5D2400X
ITU-R BT.601 Input to Single RGB Output System
RGB Output 18 DISPLAY PORT PHSO/PVSO/ PDEN/PCKO 24 LVDS or PANNEL
S5D2400X
VCK/FLD GVS/GHS Video Decoder 8 UV 8 Y (ITU-R BT.601) * UV Data Input Video Input 8-bit: RIO0 - RIO7 * Y Data Input 8-bit: VI0 - VI7 X1 X-tal X2 SCL MCU SDA OSC PORT HOST I/F PORT Deinterlacer
* RGB Output 18-bit: RO2 - RO7 GO2 - GO7 BO2 - BO7 24-bit: RO0 - RO7 GO0 - GO7 BO0 - BO7
Figure 4. S5D2400X System Block Diagram (ITU-R BT.601 Input to Single RGB Output)
15
PRELIMINARY DATASHEET
S5D2400X
DVI Input to Single RGB Output System
* RGB Input RIO0 - RIO7 GIO0 - GIO7 BIO0 - BIO7
RGB Output 24 DISPLAY PORT PHSO/PVSO/ PDEN/PCKO LVDS or PANNEL
RGB Input 24 TMDS DCK/DDEN/ DHS/DVS
S5D2400X
* RGB Output RO0 - RO7 GO0 - GO7 BO0 - BO7
DVI Graphic Input
OSC PORT
HOST I/F PORT
X1 X-tal
X2
SCL
SDA
MCU
Figure 5. S5D2400X System Block Diagram (DVI Input to Single RGB Output)
16
PRELIMINARY DATASHEET
S5D2400X
3.2 FUNCTIONAL BLOCK DIAGRAM
RIO7-RIO0 GIO7-GIO0 BIO7-BIO0
0 0 1 VIDEO_ON Adaptive Coeff. gen Input data Formatter SFC Scaling Engine 1 SC_ON
Boost-up & Sharpness Control
0 1
BU_ON
VI7-VI0 ITU-R.656
Deinterlacer Scaling Controller
Contrast Control
OSD MIX
RGB Gamma Correction
8 to 6-bit Dither
Output Data Formatter
RO7-RO0 GO7-GO0 BO7-BO0
OSD_ON DCK VCK 0 1 VIDEO_ON Timing Generator X1 RAM Fonts ROM Fonts Host Interface CKI OSD
PHSO PVSO PDEN PCKO
CKO X2 Int.OSC PLL CKOSC Hardware Reset Sync Delay Match
FILT
RSTN
MIFSEL I2CEN
SCL SDA
Figure 6. S5D2400X Functional Block Diagram
17
PRELIMINARY DATASHEET
S5D2400X
4 SOLUTION CIRCUIT FOR APPLICATION
601_FLD
601-HS HSYNC
DVI-DE
DVI-CK
DVI-HS
HSYNC
VSYNC
VSYNC
FIELD
DEN
CLK
OUT_CK OUT_DE OUT_VS OUT_HS +1.8VD1
601-VS
DVI-VS
I/O_BLUE7 +3.3VD2 I/O_BLUE6 I/O_BLUE5 I/O_BLUE4 I/O_BLUE[0...7]
PHSO 75
PVSO 74
PDEN 73
PCKO 72
TMD1 71
TMD0 70 SCAN 69
DDEN 68
DCKI 67
VSS2I 66
DHS 65
DVS 64
FLD 63
GHS 62
GVS 61
GPO2 60
GPO1 59
GPO0 58 VDD2I 57
BIO7 56
BIO6 55
BIO5 54
BIO4 53
BIO3 52
BIO2 51
I/O_BLUE3 I/O_BLUE2 50 I/O_BLUE1 I/O_BLUE0
76 O_BLUE7 O_BLUE[0...7] O_BLUE6 O_BLUE5 O_BLUE4 O_BLUE3 O_BLUE2 O_BLUE1 O_BLUE0
VDD3OP
77 BO7 78
BIO1 BIO0 49
48
BO6 BO4 BO3 BO2 BO1 VSS3OP GO6 GO5 GO4 GO3 GO1 VDD2I RO7 RO6 RO5 VDD3OP VSS3OP RO3 VSS2I RO1 RO0
VSS3OP
79 BO5 80 81 82 83
GIO7 47 GIO6 46 GIO5 45 GIO4 44 GIO3 GIO1
43
I/O_GREEN7 I/O_GREEN[0...7] I/O_GREEN6 I/O_GREEN5 I/O_GREEN4 I/O_GREEN3 I/O_GREEN2 I/O_GREEN1 I/O_GREEN0
84 BO0 85
GIO2 42
41
O_GREEN7 O_GREEN[0...7] O_GREEN6 O_GREEN5 O_GREEN4 O_GREEN3 O_GREEN2 O_GREEN1 O_GREEN0
86 GO7 87 88 89 90
GIO0 40
S5D2400X
100-TQFP-1414 (AN)
VDD3OP
39 I/O_RED7 I/O_RED6 I/O_RED5 I/O_RED4 I/O_RED3 I/O_RED2 I/O_RED1 I/O_RED0 I/O_RED[0...7]
RIO7 38 RIO6 37 RIO5 36 RIO4 35 RIO3 RIO1 VSS2I VI6
34
91 GO2 92 93 GO0 94 95 96 97
RIO2 33
32
O_RED7 O_RED[0...7] O_RED6 O_RED5 O_RED4 O_RED3 O_RED2 O_RED1 O_RED0
RIO0 31
30
VI7 29
28
I_VIDEO7 I_VIDEO6 I_VIDEO5 I_VIDEO4 I_VIDEO3 I_VIDEO2 I_VIDEO1 I_VIDEO0 I_VIDEO[0...7]
98 RO4 99
MIFSEL
VDDDP
VDDAP
VSSDP
VSSAP
VI5 27
21 VDD2I 22
I2CEN
SCSN
16 VBBP 17
RSTN
SDA
VCK
FILT
SCL
100 RO2
VI4 26
23 VI1 24
VI0
VI2
10
11
12
13
14
15
18
19
20
+3.3VD2 3.3K 3.3K 3.3K 100 100 100 22pF 25MHz 22pF 100nF 1M 1.5uH
25
D_GND
1
2
3
4
5
6
7
8
9
VI3
X1
X2
VIDEO_CLK 4.7K 47nF
SCL SDA RSTN
3.9nF +1.8VP
- ITU-R BT.656 Input Port VI[0:7]: Video Data Input Port VCK: Video Clock Input Port. - ITU-R BT.601 Input Port VI[0:7]: V Data Input Port RIO[0:7]:UV Data Input Port VCK: Video Clock Input Port FLD: Field Signal Input Port GHS: H-Sync Input Port GVS: V-Sync Input Port
D_GND D_GND D_GND
Figure 7. S5D2400X Solution Circuit for Application
18
PRELIMINARY DATASHEET
S5D2400X
5. FUNCTIONAL DESCRIPTION
5.1 CLOCK SYSTEMS AND SYSTEM OPERATION MODES 5.1.1 Clock Systems The chip supports switching of Separate-RGB signal or ITU-R BT.656/601 protocol video signal data. The SeparateRGB data input clock is DCK, and the ITU-R BT.656/601 format video signal input clock is VCK. The external X-tal oscillation clock X1 is a Free-Run Clock (Recommended 25MHz) which is used as the source clock of PLL in creating data fetch and output clock for host interface. The external clock is created by internal PLL based on the X1 frequency input in accordance with the scaling factor, and is sent to the scaling output terminal and the Panel Display Clock (PCKO). In other words, the clock system selects DCK/VCK as the external clock, uses the free-run clock X1 as the source of output clock and for host I/F, and creates the output clock based on the scaling factor in the internal PLL. In order to reduce power consumption, it is possible to control the clock system to selectively enable/disable Scaler, OSD, De-Interlacer, Boost-Up and other blocks. In the DPMS Mode, input and output clock is disabled, and only the free-run X1 clock is enabled.
Data-path RIO7 - RIO0 GIO7 - GIO0 BIO7 - BIO0 VI7 - VI0 Input Domain
SFC (sampling Freq. Conversion) Output Domain RO7 - RO0 GO7 - GO0 BO7 - BO0
DCK CKI (Input Clock) VCK
Host I/F & Register Control
CKO (Output clock) Internal Oscillator X1 CKOSC (Free-Run Clock) Freq. Synthesis Pre-divider X2 Note: CKI, CKO, CKOSC: Internal clock Name PLL PCKO
Figure 8. Internal Clock System Diagram
19
PRELIMINARY DATASHEET
S5D2400X
5.1.2 System Operation Modes The operation mode is divided, depending on the application system, into separate RGB signal input so that the signal can be used in the flat panel display, and processing of video signal entered to ITU-R BT.656/601. The built-in auto tuning function and the de-interlace function may operate against each other. In this way, power consumption can be minimized through management of the functional block. The table below shows the example of On/Off operation sets. In the DPMS mode, all the functional blocks are off, and only the host interface function works by X-tal clock X1. In the separate RGB input mode, only the BASIC_ON register must be ON for simple 1:1 action. It is possible to expand, in the system level, the operation mode set which is not described in the table. Mode ITU-R BT.656 VIDEO_ON DPMS (No Sync) Bypass 1 Bypass 2 Bypass 3 Scale Up/Down 1 Scale Up/Down 2 Scale Up/Down 3 Scale Up/Down 4 X X X X X O O O SC_ON X X X X O O O O Common BU_ON X X X O O X O O OSD_ON X X O X O O X O BASIC_ON X O O O O O O O Standby (X1 Clock) Sep. RGB (No Scale) Sep. RGB No Scale + OSD Sep. RGB No Scale + BU Sep. RGB All Operation ITU-R BT.656 Scale + OSD ITU-R BT.656 Scale + BU ITU-R BT.656 All Operation Remark
NOTES: 1. Ref. Register Map (0x0001[6:0]) 2. "O " ON (Logical "H"), "X" OFF (Logical "L") 3. Description VIDEO_ON : De-Interlace ON / OFF for ITU-R BT.656/601 Video Mode (separate-RGB or ITU-R BT.656/601 Mode Selection) SC_ON : Scaler ON / OFF BU_ON : Boost-Up ON / OFF for Image Enhancement OSD_ON : ON-Screen Display ON / OFF for User Control Mode BASIC_ON : Basic Logic Path ON / OFF (Always ON except DPMS Mode)
20
PRELIMINARY DATASHEET
S5D2400X
5.2 DE-INTERLACE The De-Interlace block receives the ITU-R BT.656/601 format data, and converts the luminance data and chrominance data from interlace scan mode to progressive scan mode. The luminance data and chrominance data in progressive scan are converted into Red/Green/Blue (RGB) data. The ITU-R BT.656 format data are separated into horizontal sync, vertical sync, field information, luminance data and chrominance data, and ITU-R BT.601 format data are separated into luminance data and chrominance data with horizontal sync, vertical sync and field information received through the other pin. 5.2.1 Functions * * * * * * * Horizontal Sync Separation from ITU-R BT.656 Format Data Vertical Sync Separation from ITU-R BT.656 Format Data Field Information Separation from ITU-R BT.656 Format Data Luminance Data Separation from ITU-R BT.656 Format Data Chrominance Data Separation from ITU-R BT.656 Format Data Interlace to Progressive Scan Conversion for Luminance and Chrominance Data Red / Green / Blue (RGB) Data Conversion from Luminance / Cb / Cr (YCbCr) Data
5.2.2 ITU-R BT.656 Format Data Separation The ITU-R BT.656 format data separation block separates horizontal sync, vertical sync, field information, luminance data and chrominance data from the ITU-R BT.656 format data input. Horizontal sync is in low state in blanking interval, and in high state in active interval. Vertical sync is in low state in blanking interval and in high state in active interval. F is in high state in odd field, and in low state in even field. The active data are a set of Cb/Y/Cr/Y. 5.2.3 Interlace to Progressive Scan Conversion The Interlace to Progressive Scan Conversion (IPC) block converts the field structure of interlace scan into the frame structure of progressive scan. In other words, 60 Hz / 30 frame (60 field) interlace scan is changed into 60 Hz / 60 frame progressive scan. In interlace to progressive scan conversion, the progressive scan line of 1 frame becomes double of the interlace scan line. In S5D2400X, you can select whether to double the line or maintain the line as it is when converting scan. 5.2.4 YCbCr to RGB Conversion The YCbCr to RGB conversion block converts the Y / Cb / Cr data into the Red / Green / Blue data.
21
PRELIMINARY DATASHEET
S5D2400X
5.3 TIMING GENERATOR The timing generator makes timing for S5D2400X, and delivers the value required to make PCKO (output clock). Using the input HS and VS, the block generates PHSO, PVSO and PDEN for output sync, and the signals made with the optimum timing for each block are sent to other blocks. TG also delivers the value required for PCKO. It sends the MCU setting value to internal PLL. 5.3.1 Output Timing Generation Using input HS and VS, TG generates the output sync (PHSO, PVSO and PDEN). The active data area must be set in input HS and VS. As shown in the following figure, set HIA_STR (0x0012, 0x0013), HIA_END (0x0014, 0x0015), VIA_STR (0x0016, 0x0017), VIA_END (0x0018, 0x0019), HIAS (0x0020, 0x0021) and VIAS (0x0022, 0x0023).
H_Input_Total HSW Horizontal Sync Input H_Start_Point H_End_Point HBP H_Active Data_Area HFP
V_Input_Total VSW Vertical Sync Input V_Start_Point V_End_Point VBP V_Active Data_Area VFP
Figure 9 Output Timing Generation The output signal can be set in HOFP (0x001A), HOSW (0x001B), HOBP (0x001C, 0x001D), VOFP (0x001E), VOSW (0x001F), HOAS (0x0024, 0x0025), VOAS (0x0026, 0x0027).
22
PRELIMINARY DATASHEET
S5D2400X
5.4 SCALER The scaler of S5D2400X operates in the following three modes (Scale-Up, Scale-Down, Bypass). 5.4.1 Scale-Up The scaler can perform scale-up from VGA to XGA (VGA SVGA, VGA XGA, SVGA XGA) in the DVI mode, and from VGA to 100MHz (VGA SVGA, VGA XGA, VGA 100 MHz, SVGA XGA, SVGA 100 MHz, XGA 100 MHz) in the ITU-R BT.656/601 mode. Different scaling ratio may be applied to H/V (Horizontal/Vertical) direction. 5.4.2 Scale-Down The scaler can perform scale-down from XGA to VGA (XGA SVGA, XGA VGA, SVGA VGA), and different scaling ratio may be applied to H/V directions. 5.4.3 Bypass In the bypass mode, the ratio between input and output image is 1:1. In this case, power consumption is decreased if the scaler is OFF (0x001[1]). The bypass mode can be used together with the scale-up mode. In order to use the two modes together, set Bypass (1:1) to horizontal direction and Scale-Up (VGP XGA) to the vertical direction. 5.5 BOOST-UP The boost-up block provides you a clear screen. 5.5.1 Adaptive Contrast Control This function provides a clearer view of a part of or the entire screen by sorting the color to find the maximum, minimum and average value and perform the contrast control processing, and replacing the color with the adaptively calculated color. 5.5.2 Adaptive Brightness Control This function provides a brighter screen based on a given LUT value. LUT is 0 ~ 255, and is mapping by 1:1. 5.5.3 Image Sharpness Control The image sharpness control processing provides a more distinctive view of each color by increasing sharpness of boundary of each color. 5.5.4 Color Compensation A color can be distorted on the screen and may look like a completely different color. The color compensation circuit corrects this problem and maintains the original color. 5.5.5 Boost Up Sub Zone Boost Up function recognizes the current status of the screen, and reflects the result on the screen. The screen area to be recognized is called "sub zone". Setting the sub zone is necessary because the screen may be affected by other data than the actual video image.
23
PRELIMINARY DATASHEET
S5D2400X
5.6 OSD (ON-SCREEN DISPLAY) OSD function provides outward GUI between TFT_LCD Monitor and End-User, enabling the user to easily control the environment of TFT-LCD monitor. OSD supports up to 512 ROM fonts; 16 MCF (Multi-Colored Font) and 464 SF (Standard Font). OSD can be set on certain area of the screen with certain size. 5.6.1 OSD Fonts 1) ROM Font * * * 7 languages 464 Standard Fonts (SF) 16 Multi-Colored Font (MCF)
2) RAM Font * * User Definable Font Max. 28 SF, Max. 9 MCF
24
PRELIMINARY DATASHEET
S5D2400X
3) Font RAM Structure Font RAM is assigned of 1008 addresses (from 0x3FFF to 0x43EE). Where, 1008 is (8 row * 28 fonts) * 2 = 504 * 2. 1008/28 = 36, and therefore, 36 addresses are assigned to a font. Because the host interface transports data in the unit of 8 bits, in order to configure a font of 12*18 as shown in Figure 10, the upper 4 bits and the lower 8 bits of 1line (12 bits) are assigned as an address. The upper 4 bits are transported as the even address and the lower 8 bits are transported as the odd address to Font RAM, respectively.
Even address 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 odd address 0x3FFF 0x4000 0x4001 0x4002 0x4003 0x4004 0x4005 0x4006 0x4007 0x4008 0x4009 0x400A 0x400B 0x400C 0x400D 0x400E 0x400F 0x4010 0x4011 0x4012 0x4013 0x4014 0x4015 0x4016 0x4017 0x4018 0x4019 0x401A 0x401B 0x401C 0x401D 0x401E 0x401F 0x4020 0x4021 0x4022 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX FONT RAM XXXX
Figure 10. OSD Font RAM
25
PRELIMINARY DATASHEET
S5D2400X
4) Display RAM Structure Display RAM is assigned of 900 addresses (0x2000 ~ 0x2383). As 900/450 = 2, 2 addresses are assigned to a display Ram cell. Because the host interface transports data in the unit of 8 bits, in order to form the display RAM cell that uses 16 bits as a cell, 2 addresses must be transported. Figure 11 shows the structure of display RAM cell.
Font RAM 12 Font Number Display RAM 0x2000 3 18 0 2 3 0x2001 0x2002 0x2003 0x2004 0x2005 0x2006 1 0 5 13 2 11 10 3 27 15 ... 1 0x2007 0x2008 0x2009 0x200A 0x200B 0x200C 0x200D 0x200E 0x200F 0x2010 0x2011 0x2012 0x2013 ... 0x2382 0x2383
A B C
Boder/ shadow BLINK
Font Color (FC) Ram/Rom Select
&
26
Even Address 27 Odd Address Font Number Display RAM Cell
Figure 11. OSD Display RAM
PRELIMINARY DATASHEET
S5D2400X
5) Font RAM Clear This function clears the font RAM based on rising edge detect. The font RAM is cleared by power on reset or FTRAM_CLRN Register. The operation time is 1 Clock, and no delay is made. The refresh region indicates that "0" value will be given to the entire memory. Down load or clear works only when OSD_ON Register is On. In basic operation the font RAM clear function is not required. Using the function in basic mode may cause data loss or other critical problems. 6) Display RAM Clear This function clears display RAM based on the rising edge detect. The RAM is cleared by power on reset or DSRAM_CLRN Register. The operation time is 1 Clock, and no delay is made. 5.6.2 OSD Windows
1.
Flexible OSD Size: * * Displays up to 64 fonts in horizontal within the range of 450 fonts Displays up to 64 fonts in vertical within the range of 450 fonts
2. 3. 4. 5. 6. 7. 8.
Up to 4 multiple Windows (1 Main Window + 4 Multiple Windows) Up to 32 Windows color including intensity Programmable multiple Windows shadow color/size Fine Windows bordering Pop up / down-able multiple Windows Font position mapping based multiple Windows horizontal/vertical start / end point adjustment Transparency: Input image / OSD image mix.
27
PRELIMINARY DATASHEET
S5D2400X
5.6.3 System Description OSD stores ROM and font RAM address and features on the display RAM, displays the font and its features at the designated position, and displays on the screen the features designated in OSD register. 1) FONT OSD font consists of 12 x 18 (width x length) pixels, and is divided into character and raster when displayed on the screen.
12 Raster 18
A
Character
Font
Figure 12. OSD FONT Structure Font color can be controlled by FC of display RAM. Each font can have 16 character colors and 16 raster colors. FC value is used as a reference of LUT to control character color and raster color. 2) User Definable OSD area OSD area is defined with the number of OSD horizontal fonts and the number of OSD vertical fonts to be displayed on the screen by OSD_HFONT[5:0] and OSD_VFONT[5:0]. OSD_HFONT and OSD_VFONT are assigned of 6 bits each, generating 64 horizontal/vertical fonts respectively. Because the maximum size of display RAM is limited to 450, it must meet OSD_HFONT*OSD_VFONT 450. (RAM Address 0 ~ 449) If OSD_HFONT is set to 30 and OSD_VFONT to 10, OSD area is displayed as shown below. In this case, Addresses 0~299 of the display RAM are used for display.
Display RAM Address 0 Display RAM Address 30
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ALPHA
Figure 13. OSD Display RAM Structure
28
PRELIMINARY DATASHEET
S5D2400X
5.6.4. Functions 1) OSD Position Start position of OSD can be changed via OSD_HSP and OSD_VSP of the OSD register.
Horizontal Active Area (1, 1) (OSD_HSP, OSD_VSP) LUO LUI TK TN OSD Area RLI RLO OSD Window Border Component (LUO, LUI, RLI, RLO, TK, TN)
Vertical Active Area
Figure 14. OSD Position 2) Font size control OSD fonts are saved in FontRAM or ROM in the unit of 12 bits, displayed as a 12*18 font through No. 18 access and display. The horizontal and vertical size of a font can be 1x, 2x, 3x and 4x through adjustment of CH_HSZ and CH_VSZ. 3) Character Border/Shadow Character Border/Shadow of a font can be implemented through CH_BDSH_EN setting in OSD register, and with 1or 0 (1: Border, 0: Shadow) selection of CH_BDSH of display RAM. 4) Blink Control OSD blink can be controlled by font. Font blinking function is enabled through BL_NTRA (BLink or NoToneRAster) setting and display RAM blink setting. BLNK_SEL is used to adjust blink duty as the blink function is enabled.
29
PRELIMINARY DATASHEET
S5D2400X
BLNK_SEL 0 1 2 3 4 5 6 7
Blink OFF 0.5 sec 1 sec 0.5 sec 1 sec 1.5 sec 2 sec 1 sec 2 sec
Blink ON 0.5 sec 0.5 sec 1 sec 1 sec 1.5 sec 1 sec 2 sec 2 sec
BLNK_C supports the color inversion of the blinking character. If BLNK_C is enabled, the complementary color of the font raster color is displayed in the character area during blink-off. If BLINK_C is reset, the raster color is displayed in the character area during blink-off. 5) Intensity control OSD intensity can be controlled by frame. It is possible to control 16 colors by character / raster in reference to LUT of Display RAM FC (Font Color), or 32 colors by frame by toggling INTENSITY bit. 6) Multi-Colored font control OSD provides 512 ROM fonts to display the icon, generating Multi-language OSD icon. Out of 512 ROM fonts, 464 fonts are the standard fonts (Single-Color) and 16 (16*3 = 48) fonts are multi-colored fonts. Each multi-colored font consists of three color attribute ROM fonts. The three fonts make a multi-colored font with OR operation. In order to access a multi-colored font, the R-color attribute font is addressed. For example, 1D0h, 1E0h and 1F0h address indicate R, G and B-color attribute fonts respectively. By addressing 1D0h, a multi-colored font can be accessed through OR operation of 1D0h, 1E0h and 1F0h color attribute fonts.
30
PRELIMINARY DATASHEET
S5D2400X
1 0
R Y G
C
1D0h : Red
1E0h : Green
B
1F0h : Blue Masked data of multi-color font: 1D0h Displayed font: 1D0h
Figure 15. OSD Multi Color Font Structure The multi-colored font (MCF) of the RAM font is made in the same way as the Standard Font (SF) is formed. MCF count can be adjusted through the N_MCF value, and 28 fonts except MCF are used as SF. 7) External OSD control If the external OSD is enabled (EXT_OSD_SEL == 1), the external OSD expresses the color in reference to LUT of S5D2400X_OSD. For color mapping, refer to 4-3. Receiving R, G, B, I, EN input from the external OSD, S5D2400X_OSD decodes the 4 inputs except EN, and displays each color value. External OSD input is delayed by 2Pixel clock before displayed. Even if external OSD is used, S5D2400X_OSD supports half tone. In order to apply half tone to font raster and not to apply half tone to the character, the values between 0000b and 1011b shall be assigned to R, G, B, I. (OSD_TONE == 0, CH_TONE == 0)
31
PRELIMINARY DATASHEET
S5D2400X
8) Blank font control By accessing and displaying 000h address of ROM, it is possible to display only input image within the OSD area. This ROM 000h address called a blank font has several useful functions. For example, multiple Windows can be displayed on the OSD area only. The function can be used to display multiple Windows without the OSD area. 9) Row Space A row space indicates the space in vertical direction between the fonts displayed on OSD. S5D2400X_OSD assigns 0-15 to ROW_SP to implement the row space. A row space is displayed on the screen via interworking with Character Vertical Size (CH_VSZ). In other words, if CH_VSZ is 1 and ROW_SP is 3, the row space actually displayed is 6 pixels. The maximum number of vertical pixels of a row space to be displayed is 4*15 (CH_VSZ == 3, when ROW_SP == 15). If row space is enabled, the raster is extended as many as the row space pixels on the top or bottom of a font. Figure 18 shows the details. (when ROW_SP == 1, and CH_VSZ == 0). If row space is applied, the multi color Ram font has extended row on the top and bottom of the font.
A B
Row Space
Row Space
20
18
18
Figure 16. OSD Row Space
32
PRELIMINARY DATASHEET
S5D2400X
10) Half Tone (Transparency) Control Half tone of S5D2400X_OSD is made via mixing of input image and OSD image. Where, OSD_TONE[1:0] is used as a weight for mixing of image and OSD image.
w Input Image Half Tone Image OSD Image 1-w
Figure 17. Half Tone Block 5.7 GAMMA The gamma correction block performs gamma compensation to complement the TFT-LCD panel features. The block divides the input signal level to various sections, makes non-linear feature curve for each section, and by linear interpolation of each section, performs gamma compensation. In other words, the block divides the input into sections, and changes the output value of each section to deform specific curves for gamma compensation. An input signal has 8 bits digital level, it is evenly divided into 32 sections with the space of 8. The block receives output value for each evenly spaced level from MCU, performs non-linear gamma compensation, and performs linear interpolation for the values between the levels. Gamma compensation is applied to each of RGB data in the same way, but the output values can be changed respectively.
Y RYAV32 RYAV31 RYAV30
RYAV4 RYAV3 RYAV2 RYAV1 0 8 16 24 32
....
240, 248, 255,
X
Figure 18. R-Channel Gamma Correction
33
PRELIMINARY DATASHEET
S5D2400X
5.8 CONTRAST CONTROL Contrast block is applied to all pixels, and can control the boost-up area and other areas respectively. Blacklevel and brightness play the role of offset, and contrast works as gain. Each pixel value is acquired in the following process. Rout = [Rin - Blacklevel(Red)] * Contrast(Red) + Brightness(Red) Gout = [Gin - Blacklevel(Green)] * Contrast(Green) + Brightness(Green) Bout = [Bin - Blacklevel(Blue)] * Contrast(Blue) + Brightness(Blue) 5.9 DITHER 5.9.1 Enable Dither The dithering block supports the following 4 modes. Table 8. Dither Mode DTH_MODE[1:0] 000 101 Operation mode (I/O and RGB data valid bit count) Bypass mode (8-bit RGB input, 8-bit RGB output) ED mode (8-bit RGB input, 6-bit RGB output)
5.9.2 Error Diffusion (ED) Method The following figure illustrates the block diagram of error diffusion dithering. The block diagram is made for R, but can be applied to G and B in the same manner.
R
THRESHOLD
R_D
ERROR FILTER
Figure 19. Error Diffusion Architecture The threshold block cuts off the lower 2 bits. Therefore the cut 2 bits are used as the input to the error filter.
34
PRELIMINARY DATASHEET
S5D2400X
5.10 TEST PATTERN GENERATOR (TPG) TPG internally generates a pattern for sync and test without input sync and data. In order to enable TPG, TEST_PAT_ON (0x0001[7]) must be High. 5.10.1 TPG Sync Signals Figure 20 illustrates the internally generated sync.
64 HS
120
Active Data Area
16
3 VS
16
Active Line Area
1
Figure 20. TPG Sync Signals The active data area and the active line area in Figure 20 are determined by TP_RESOLUTION (0x0006 [7:6]). Table 9. Active Pattern Areas PATTERN_SIZE ACTIVE AREA (H*V) 0 VGA (640*480) 1 SVGA (800*600) 2 XGA (1024*768)
5.10.2 Test Patterns The pattern to be used as input data to scaler is selected by TP_TYPE(0x0006[5:0]). For Bit [5], 0 is pass and 1 inverts image. For Bit [4], 0 sends normal pattern and 1 sends H/V ramp waveform. Other bits are described in Figure 21.(a) and (b). Figure 21.(a) illustrates the ramp waveform selection in H/V direction when Bit [4] is 1. Figure 22 (a) shows the example. Figure 21.(b) shows the example when bit [4] is 0. If the lower 4bits are 0~5, the screen pattern is as displayed in Figure 22.(b). The other values from 6~15 display the white screen.
[5] [4] [3] [2] [1] [0] 1 INV. 0~7:Ramp wavelength interval H/V SEL (a)
[5] [4] [3] [2] [1] [0] 0 INV. 0-5 PATTERN INDEX (b)
Figure 21. Test Pattern Generation Method
35
PRELIMINARY DATASHEET
S5D2400X
111000
111001
110000
110001
011000
011001 (a)
010000
010001
0 : Boundary
1 : Diagonal Ramp
2 : ON/OFF
3 : H-Line
4 : V-Line (b)
5 : BLACK
Figure 22. Built-in Test Patterns
36
PRELIMINARY DATASHEET
S5D2400X
5.11 I2C HOST INTERFACE PROTOCOL S5D2400X supports data communication through I2C protocol based host interface. The slave address for a device ID is 7 bits (binary "0000101"). The address is made with 15 bits with 8 bits data depth. Therefore, in order to access an address, 2 bytes (Address MSB, Address LSB) are indexed with 1 byte data depth. Because the address bits are 15 bits, the 1 byte of the address MSB is Binary "X A14 A13 A12 A11 A10 A9 A8", and the 1 byte of the address LSB is Binary "A7 A6 A5 A4 A3 A2 A1 A0". 5.11.1 Timing Chart (Data sequence for register write/read of n registers) Write Data Sequence
SDA SCL Start
Device ID
W
Address MSB
ACK Address LSB Data 1
ACK
SDA SCL
ACK SDA SCL ACK Data 2 Data n
ACK
Stop
Read Data Sequence
SDA SCL Start SDA SCL
Device ID
R
Address MSB
ACK Address LSB Data 1
ACK
ACK SDA SCL ACK Stop Data 2 Data n
ACK
The figure below shows the device ID and read/write byte for the slave address in the above timing chart.
37
PRELIMINARY DATASHEET
S5D2400X
0
0
0
0
1
0
1
R/W
DEVICE ID
(R = 1, W = 0)
Because an address is 15 bits, the 1 bit of the address MSB is remained. Set 0 or 1 (Don't Care : X) for the 1 bit.
5.11.2 Example Write to one register * * * * * * Send Start Signal Send Device ID Byte (R/W Bit = LOW) Send Address MSB Send Address LSB Send Data to Address Send Stop Signal
Write to four consecutive register * * * * * * * * * Send Start Signal Send Device ID Byte (R/W Bit = LOW) Send Address MSB Send Address LSB Send Data 1 to Address Send Data 2 to (Address + 1) Send Data 3 to (Address + 2) Send Data 4 to (Address + 3) Send Stop Signal
Read from one register * * * * * * Send Start Signal Send Device ID Byte (R/W Bit = HIGH) Send Address MSB Send Address LSB Receive Data from Address Send Stop Signal
38
PRELIMINARY DATASHEET
S5D2400X
Read form four consecutive control registers * * * * * * * * * Send Start Signal Send Device ID Byte (R/W Bit = HIGH) Send Address MSB Send Address LSB Receive Data 1 from Address Receive Data 2 from (Address + 1) Receive Data 3 from (Address + 2) Receive Data 4 from (Address + 3) Send Stop Signal
5.12 DISPLAY REGION MASKING CONTROL As shown in the following figure, HMIN set the left boundary, HMAX set the right boundary, VMIN set the upper boundary and VMAX set the lower boundary. HMAX is assigned of both address 0X007[0] and 0X0009[7:0], Position of HMIN, HMAX, VMIN and VMAX has the setting value of 4 times.
VMIN
VMAX
Actual Image Display Region HMAX HMIN Display Region
In this way, Actual image display region can be selected flexibly, and the other display region is displayed black level.
39
PRELIMINARY DATASHEET
S5D2400X
6 REGISTER MAP
6.1 GLOBAL CONTROL REGISTERS Bits Register Name 0x0000 7:2 1 FREE_RUN Reserved Pseudo sync RUN mode (1: ON, 0: OFF (Default)) - When to use : Power on, mode switch, and recovery from Over Sync/Under Sync DPMS 0 SOFT_RSTN Resets the chip in software level except User Register (The register defined in the spec data sheet). (Low Active) - When to use: Power ON and mode switch - How to use: Set the chip to 0, reset, and then to 1. (Reset time must be 1uS or higher (1 Clock) without delay.) The last "N" of the Register Name indicates Active Low Soft Reset. Function GLOBAL_RESET (Default: 0 x 01) R/W
0x0001 7 TEST_PAT_ON
GLOBAL_BLOCK_CONTROL (Default: 0 x 03)
R/W
Blocks input regardless of external data input status, and displays the internal test pattern. Test Pattern (1: ON, 0: OFF (Default))
6
VIDEO_ON
VIDEO Mode & DVI Mode (1: VIDEO Mode, 0: DVI Mode (Default))
5 4 3 2 1 SC_ON BU_ON OSD_ON
Reserved Boost Up (1: ON, 0: OFF (Default)). Do not use in the DVI mode. OSD (1: ON, 0: OFF (Default)) Reserved - Up to 10x for Scaling-Up and up to 1/2x for Scaling-Down - The screen size is not changed when switching OFF SC_ON when the target resolution and the input resolution are the same (1x Scaling). - In bypass status, only scaling is bypassed. Therefore, PMS setting must be performed. (1: Scaler ON, 0: Scaler OFF (Default))
0
BASIC_ON
In the Normal operation status, Basic logic must be always On. (1: Basic Logic ON (Default), 0: Basic Logic OFF)
40
PRELIMINARY DATASHEET
S5D2400X
0x0002 7:4 3 PWM1_ON
GLOBAL_IO_CONTROL (Default: 0 x 00) Reserved Pulse Width Modulation1
R/W
1: ON (PWM_DATA1(0x000D 7:0h) signal is sent through GP01 Pin) 0: OFF(GPO1(Ox000B 1h) signal is sent through GP01 Pin) 2 PWM0_ON Pulse Width Modulation0 1: ON (PWM_DATA0 (0x000C 7:0h) signal is sent through GPO0 Pin) 0: OFF(GPO0(0x000B 0h) signal is sent through GPO0 Pin) 1 0 PLL_PWR_SAVE Reserved Scaler PLL Power Down Mode for system CLK generation (CKO) (1: PLL Power Down Mode, 0: Normal Mode)
0x0003 7:6 5 ROUT_EN
GLOBAL_OUTPUT_CONTROL (Default: 0 x 38) Reserved RO (R-channel Output) Enable of PIN NO 1~2, 95~100 ROUT (1: Enable (Default), 0: Disable)
R/W
4
GOUT_EN
GO (G-channel Output) Enable of PIN NO 86~93 GOUT (1: Enable (Default), 0: Disable)
3
BOUT_EN
BO (B-channel Output) Enable of PIN NO 77~84 BOUT (1: Enable (Default), 0: Disable)
2
RIN/OUT_EN
Determines whether to use RIO of PIN NO 31~38 as output or input. If the OCHMD bit is 0, RIO is used as input regardless of RIN/OUT_EN bit control. If the OCHMO bit is 1, RIO is used as input or output depending on RIN/OUT_EN bit control. (1: Output, 0: Input (Default)) Determines whether to use GIO of PIN NO 40~47 as output or input If the OCHMD bit is 0, GIO is used as input regardless of GIN/OUT_EN bit control. If the OCHMO bit is 1, GIO is used as input or output depending on GIN/OUT_EN bit control. (1: Output, 0: Input (Default))
1
GIN/OUT_EN
0
BIN/OUT_EN
Determines whether to use BIO of PIN NO 49~56 as output or input. If the OCHMD bit is 0, BIO is used as input regardless of BIN/OUT_EN bit control. If the OCHMO bit is 1, BIO is used as input or output depending on BIN/OUT_EN bit control. (1: Output, 0: Input (Default))
41
PRELIMINARY DATASHEET
S5D2400X
0x0004 7:6 5 4:0 CKI2_PHASE
GLOBAL_PHASE_CONTROL ((Default: 0 x 00) Reserved
R/W
Changeable 2-Times Input Clock Phase (1: Phase Inverse, 0: Normal) Reserved
0x0005 7:6 5:4 3 2:0 CKO_SEL CKO2_PHASE PCKO_PHASE
GLOBAL_CKO_CONTROL (Default: 0 x 00) Reserved CKO Clock source Select (Always 00) (00: PLL Output is used 01,10,11: Not used) Changeable 2-Times Scaler Output Clock Phase (1: Phase Reverse, 0: Normal) Scaler Output Clock(PCKO) Time Delay - PCKO_PHASE[2] : PCKO Phase Inverse. - PCKO_PHASE[1:0] : X ns Delay (X = PCKO_PHASE[1:0])
R/W
0x0006 7:6 5:0 PATTERN_SIZE PATTERN_SEL
GLOBAL_PATTERN_CONTROL (Default: 0 x 80) Pattern Size select (00: VGA, 01: SVGA, 10: XGA (Default), 11: Unused) Selecting Test Pattern Type (Default: 0)
R/W
0x0007 0 HMAX[8]
GLOBAL_H_MASKING_CONTROL (Default: 0 x 00) Horizontal Masking Max Number (The MSB of HMAX [address 0x0009])
R/W
0x0008 7:0 HMIN
GLOBAL_H_MASKING_CONTROL (Default: 0 x 00) Horizontal Masking Min Number
R/W
0x0009 7:0 HMAX[7:0]
GLOBAL_H_MASKING_CONTROL (Default: 0 x 00) Horizontal Masking Max Number (The LSB of HMAX)
R/W
42
PRELIMINARY DATASHEET
S5D2400X
0x000A 7:5 DITHER_MODE
GLOBAL_IO_MODE_DEFINE (Default: 0 x 00)
R/W
Selecting Dither mode type to change from 8 bits to 6 bits on the Scaler out. 000 : Bypass 101 : Error Diffusion Other values should not be used.
4:3 2 1 0 ICHMD OCHMD OCHSEL
Reserved Scaler Input Channel Mode ( 0: Single Input (Always Low)) Scaler Output Channel Mode Select (1: Dual Output, 0: Single Output) Select A or B channel from Scaler Output Dual Channel. - This bit is enabled when ADDR (0x000A[1]) is Dual. 0: In the Dual mode, data are sent from Channel A. 1: In the Dual mode, data are sent from Channel B. 0x000B GLOBAL_GPO_DATA (Default: 0 x 00) R/W
7:6
PWM_PRE_ SCALE
When pulse width modulation is used, this bit determines, based on the oscillation clock, the level of PWM duty level to be divided. (00: Oscillation, 01: 2_Divided, 10: 4_Divided, 11: 8_Divided)
5
PWM_EN
Pulse Width Modulation Enable (1: Enable, 0: Disable)
4:3 2 1 0 GPO2 GPO1 GPO0
Reserved General Purpose Output 2 General Purpose Output 1 General Purpose Output 0
0x000C 7:0 PWM_DATA0
GLOBAL_PWM_DATA1 (Default: 0 x 00) Pulse Width Modulation 0. Controls duty in the High section.
R/W
0x000D 7:0 PWM_DATA1
GLOBAL_PWM_DATA2 (Default: 0 x 00) Pulse Width Modulation1. Controls duty in the High section.
R/W
0x000E 7:0 VMIN
GLOBAL_V_MASKING_CONTROL (Default: 0 x 00) Vertical Masking Min Number
R/W
0x000F 7:0 VMAX
GLOBAL_V_MASKING_CONTROL (Default: 0 x 00) Vertical Masking Max Number
R/W
43
PRELIMINARY DATASHEET
S5D2400X
6.2 TIMING GENERATOR CONTROL REGISTERS Bits Register Name 0x0010 7 6 HVSO_DET_ON HVSO_DET Function TG_MODE_SEL (Default: 0 x 18) Must be always 1. If the bit is "0", HVSO_DET is not controlled. - In Invert, the bit initializes TG Sync, and detects again to create output sync. Event Driven PHSO and PVSO Detect (Low to High, High to Low) by Write Value Change Operation 5 4:3 DET_FRAME Reserved TG Detection Start Frame (1 ~ 4 Frame): (Default: 3) : The number of frames required to detect sync after the HVSO_DET value is changed. 2 PREDIV_CKSEL Pre-Divider clock Select (1: CKI, 0: CKOSC (X1, Default)) 1:0 PLL_FIN_SEL PLL FIN Signal Select (0: PRE_CK XGA (Default), 1: Not used, 2, 3: HS when scaling rate is small) If HS is used in MCU Control, select PRE_CK to stabilize CLK, and then, select HS. R/W
0x0012 7:3 2:0 HIA_STR[10:8] Reserved
TG_HIA_STR_h (Default: 0 x 01)
R/W
Manual Horizontal Input Active Start Point (Horizontal Input sync Width + Back Porch)
0x0013 7:0 HIA_STR[7:0]
TG_HIA_STR_l (Default: 0 x 10) Manual Horizontal Input Active Start Point
R/W
0x0014 7:3 2:0 HIA_END[10:8] Reserved
TG_HIA_END_h (Default: 0 x 05)
R/W
Manual Horizontal Input Active End Point (Horizontal Input sync Width + Back Porch + Active Size)
44
PRELIMINARY DATASHEET
S5D2400X
0x0015 7:0 HIA_END[7:0]
TG_HIA_END_l (Default: 0 x 0F) Manual Horizontal Input Active End Point
R/W
0x0016 7:3 2:0 VIA_STR[10:8] Reserved
TG_VIA_STR_h (Default: 0 x 00)
R/W
Manual Vertical Input Active Start Point (Vertical Input sync Width + Back Porch)
0x0017 7:0 VIA_STR[7:0]
TG_VIA_STR_l (Default: 0 x 1F) Manual Vertical Input Active Start Point
R/W
0x0018 7:3 2:0 VIA_END[10:8] Reserved
TG_VIA_END_h (Default: 0 x 03)
R/W
Manual Vertical Input Active End Point (Vertical Input sync Width + Back Porch + Active Size)
0x0019 7:0 VIA_END[7:0]
TG_VIA_END_l (Default: 0 x 1E) Manual Vertical Input Active End Point
R/W
- H/V_Start/end Point is changed when VIA_END[7:0] is controlled.
0x001A 7:0 HOFP
TG_HOFP (Default: 0 x 10) Horizontal Output Front Porch
R/W
0x001B 7:0 HOSW
TG_HOSW (Default: 0 x 60) Horizontal Output Sync Width
R/W
0x001C 7:3 2:0 HOBP[10:8] Reserved
TG_HOBP_h (Default: 0 x 00)
R/W
Horizontal Output Back Porch
0x001D 7:0 HOBP[7:0]
TG_HOBP_l (Default: 0 x B0) Horizontal Output Back Porch
R/W
45
PRELIMINARY DATASHEET
S5D2400X
0x001E 7 6:0 VOFP Reserved
TG_VOFP (Default: 0 x 01)
R/W
Vertical Output Front Porch
0x001F 7:0 VOSW
TG_VOSW (Default: 0 x 03) Vertical Output Sync Width
R/W
0x0020 7:3 2:0 HIAS[10:8] Reserved
TG_HIAS_h (Default: 0 x 04)
R/W
Horizontal Input Active Size
0x0021 7:0 HIAS[7:0]
TG_HIAS_l (Default: 0 x 00) Horizontal Input Active Size
R/W
0x0022 7:3 2:0 VIAS[10:8] Reserved
TG_VIAS_h (Default: 0 x 03)
R/W
Vertical Input Active Size
0x0023 7:0 VIAS[7:0]
TG_VIAS_l (Default: 0 x 00) Vertical Input Active Size
R/W
0x0024 7:3 2:0 HOAS[10:8] Reserved
TG_HOAS_h (Default: 0 x 04)
R/W
Horizontal Output Active Size
0x0025 7:0 HOAS[7:0]
TG_HOAS_l (Default: 0 x 00) Horizontal Output Active Size
R/W
0x0026 7:3 2:0 VOAS[10:8] Reserved
TG_VOAS_h (Default: 0 x 03)
R/W
Vertical Output Active Size
46
PRELIMINARY DATASHEET
S5D2400X
0x0027 7:0 VOAS[7:0]
TG_VOAS_l (Default: 0 x 00) Vertical Output Active Size
R/W
0x0028 7:0 PLL_P[15:8]
TG_PLL_P_h (Default: 0 x 03) PLL Programmable Pre-Divider
R/W
0x0029 7:0 PLL_P[7:0]
TG_PLL_P_l (Default: 0 x E8) PLL Programmable Pre-Divider
R/W
0x002A 7:6 5:0 PLL_M[13:8] Reserved
TG_PLL_M_h (Default: 0 x 18)
R/W
PLL Programmable Main-Divider
0x002B 7:0 PLL_M[7:0]
TG_PLL_M_l (Default: 0 x 9B) PLL Programmable Main-Divider
R/W
0x002C 7:2 1:0 PLL_S Reserved
TG_PLL_S (Default: 0 x 01)
R/W
PLL Programmable Post Scaler
0x002D 7:0 PLL_M_FRACT
TG_PLL_M_FRACT (Default: 0 x 00) TG's PLL_M register Fraction bits
R/W
0x0032 7:6 5:0 A_HACTO_OFFSET [13:8]
TG_A_HACTO_OFFSET_h (Default: 0 x 02) Reserved Automatic Horizontal Output Active Point OFFset Delay
R/W
- Up Mode: A_HACTO_OFFSET = HItotal * VSTR_OFFSET * Vratio * HTOTratio / 32 - Down Mode: A_HACTO_OFFSET = 29 * HTOTratio * Vratio + HITotal * VSTR_OFFSET * Vratio * HTOTratio/32 - 2
47
PRELIMINARY DATASHEET
S5D2400X
0x0033 7:0 A_HACTO_OFFSET [7:0]
TG_A_HACTO_OFFSET_l (Default: 0 x 90) Automatic Horizontal Output Active Point OFFset Delay
R/W
0x01BO 7:5 4 D_STOP_SIZE Reserved
TG_SYNC_DVI (Default: 0 x 0A)
R/W
Size Detection Update Enable (1: Previous Frame Data, 0: Frame Update)
3
DHS_POL_SEL
TMDS Output DHS Polarity Detection Priority (1: MCU Detection, 0: Internal Detection)
2
DHS_POL_EXT
TMDS Output DHS Polarity Selection by MCU (DHS_POL_SEL = 1) (1: Positive Type, 0: Negative Type)
1
DVS_POL_SEL
TMDS Output DVS Polarity Detection Priority (1: MCU Detection, 0: Internal Detection)
0
DVS_POL_EXT
TMDS Output DVS Polarity Selection by MCU (DVS_POL_SEL = 1) (1: Positive Type, 0: Negative Type)
0x01B2 7:3 2:0 DHS_HITS[10:8] Reserved
TG_DHS_TOTAL_h
RO
DHS Horizontal Input Total Size
0x01B3 7:0 DHS_HITS[7:0]
TG_DHS_TOTAL_l DHS Horizontal Input Total Size
RO
0x01B4 7:3 2:0 DVS_VITS[10:8] Reserved
TG_DVS_TOTAL_h
RO
DVS Vertical Input Total Size
0x01B5 7:0 DVS_VITS[7:0]
TG_DVS_TOTAL_l DVS Vertical Input Total Size
RO
48
PRELIMINARY DATASHEET
S5D2400X
0x01B6 7:3 2:0 DD_HIA_STR[10:8] Reserved
TG_DDEN_HIA_STR_h
RO
DDEN Horizontal Input Active Start Point
0x01B7 7:0 DD_HIA_STR[7:0]
TG_DDEN_HIA_STR_l DDEN Horizontal Input Active Start Point
RO
0x01B8 7:3 2:0 DD_HIA_END[10:8] Reserved
TG_DDEN_HIA_END_h
RO
DDEN Horizontal Input Active End Point
0x01B9 7:0 DD_HIA_END[7:0]
TG_DDEN_HIA_END_l DDEN Horizontal Input Active End Point
RO
0x01BA 7:3 2:0 DD_VIA_STR[10:8] Reserved
TG_DDEN_VIA_STR_h
RO
DDEN Vertical Input Active Start Point
0x01BB 7:0 DD_VIA_STR[7:0]
TG_DDEN_VIA_STR_h DDEN Vertical Input Active Start Point
RO
0x01BC 7:3 2:0 DD_VIA_END[10:8] Reserved
TG_DDEN_VIA_END_h
RO
DDEN Vertical Input Active End Point
0x01BD 7:0 DD_VIA_END[7:0]
TG_DDEN_VIA_END_l DDEN Vertical Input Active End Point
RO
49
PRELIMINARY DATASHEET
S5D2400X
6.3 DE-INTERLACE CONTROL REGISTERS Bits Register Name 0x0040 7:6 5 DI_FIELD_POL Reserved FIELD Signal Polarity 1: Odd Field (Field 1) High, Even Field (Field 2) Low - Required Design 0: Even Field (Field 2) High, Odd Field (Field 1) Low - 656 SPEC 4 DI_HACT_POL HACT Signal Polarity 1: Active High - Required Design 0: Active Low - 656 SPEC 3 DI_VACT_POL VACT Signal Polarity 1: Active High - Required Design 0: Active Low - 656 SPEC 2 DI_SYNC_GEN Sync Generation Block Selection 0: Required Design 1 DI_C_SIGN Chroma Sign Bit Determination 1: 2's Complementary - Non SPEC 0: Positive Number - SPEC (Required Design) 0 DI_CBCR_SEL Cb / Cr Signal Input Type Selection 1: CR Y CB Y CR Y ... - NON_SPEC 0: CB Y CR Y CB Y ... - SPEC (Required Design) Function DI_ SYNC_DEFINE (Default: 0 x 38) R/W
0x0041 7 6 5 4 3 2 1 0 ITU-R BT.656 DI_HALF_RATE HALF_YC_POL_INV HALF_VS_POL_INV HALF_HS_POL_INV HALF_HACTO_POL_ INV HALF_FIELD_POL_ INV
DI_SYNC_POLARITY (Default: 0 x 00) Reserved 1: ITU-R BT.601, 1: Half_Rate ON, 0: ITU-R BT.656 0: Half_Rate OFF
R/W
Half_Rate Y/C Polarity Inversion Half_Rate V-Sync Polarity Inversion Half_Rate H-Sync Polarity Inversion Half_Rate HACTO Polarity Inversion Half_Rate Field Polarity Inversion
50
PRELIMINARY DATASHEET
S5D2400X
0x0042 7:4 3:0 VSO_ODD_SEL VSO_EVEN_SEL
DI_VSO_SEL (Default: 0 x 00) Odd Field V-Sync Select Even Field V-Sync Select
R/W
0x0043 7:0 DI_HOFP
DI_HOFP (Default: 0 x 0A) Horizontal Output Front Porch
R/W
0x0044 7:0 DI_HOSW
DI_HOSW (Default: 0 x 1E) Horizontal Output Sync Width
R/W
0x0045 7:0 DI_VOFP
DI_VOFP (Default: 0 x 04) Vertical Output Front Porch
R/W
0x0046 7:0 DI_VOSW
DI_VOSW (Default: 0 x 06) Vertical Output Sync Width
R/W
0x0047 7:0 DI_LINE_START
DI_LINE_START (Default: 0 x 03) Vertical Line Start Point Included Active Vertical Area
R/W
0x0048 7:2 1:0 DI_LINE_WIDTH[9:8] Reserved
DI_LINE_WIDTH_h (Default: 0 x 01)
R/W
Vertical Line Width Included Active Vertical Area
0x0049 7:0 DI_LINE_WIDTH[7:0]
DI_LINE_WIDTH_l (Default: 0 x E2) Vertical Line Width Included Active Vertical Area
R/W
0x004A 7:4 3:2 DI_DI_YTYPE
DI_DEINTERLACE_TYPE (Default: 0x 0F) Reserved Y Interpolation Type (Trade Off of screen blurring and zagging) 0 : Screen blurring < -- > 3 : Noise 0 : Strong Zagging < -- > 3 : Weak Zagging Recommended Value : 1 C Interpolation Type (The same value with Y Interpolation Type)
R/W
1:0
DI_DI_CTYPE
51
PRELIMINARY DATASHEET
S5D2400X
0x004B 7:4 3:0 DI_HACTO_ST_MG DI_HACTO_ED_MG
DI_HACTO_MG (Default: 0 x FF) HACTO Signal Start Point Margin (-8 ~ +7) : DI_MIN_H = HACTO Start + DI_HACTO_ST_MG HACTO Signal End Point Margin (-8 ~ +7) : DI_MAX_H = HACTO End + DI_HACTO_ED_MG
R/W
0x004C 7:3 2:0 DCLK_PHASE Unused
DI_601CLK_PHASE (Default: 0 x 00)
R/W
ITU-R BT.601 format Clock Phase
0x004D 7 6 5 4 3:2 1:0 EXT_FLD_SEL HS601_INV VS601_INV V601_ODD V601_EVEN Unused
DI_601HV_SEL (Default: 0 x 00)
R/W
1: External Field Select, 0: Internal Field Select ITU-R BT.601 H-Sync Inversion ITU-R BT.601 V-Sync Inversion ITU-R BT.601 Odd Field Active Line Select ITU-R BT.601 Even Field Active Line Select
0x004E 7:1 0 DI_601HIA_STR[8] Unused
DI_601HIA_STR_h (Default: 0 x 00)
R/W
ITU-R BT.601 Horizontal Input Active Start Point
0x004F 7:0 DI_601HIA_STR[7:0]
DI_601HIA_STR_l (Default: 0 x EF) ITU-R BT.601 Horizontal Input Active Start Point
R/W
0x0050 7:0 DI_601VIA_STR
DI_601VIA_STR (Default: 0 x 11) ITU-R BT.601 Vertical Input Active Start Point
R/W
0x0051 7:2 1:0 DI_601_VIAS[9:8] Unused
DI_601_VIAS_h (Default: 0 x 00)
R/W
ITU-R BT.601 Vertical Input Active Size
52
PRELIMINARY DATASHEET
S5D2400X
0x0052 7:0 DI_601_VIAS[7:0]
DI_601_VIAS_l (Default: 0 x F1) ITU-R BT.601 Vertical Input Active Size
R/W
0x0053 7:0 FIELD601_TH
DI_FIELD601_TH (Default: 0 x 46) ITU-R BT.601 Internal Field Threshold
R/W
0x01C0 7:3 2:0 DI_HOTS[10:8] Reserved
DI_H_TOTAL_h
RO
Horizontal Output Total Size
0x01C1 7:0 DI_HOTS[7:0]
DI_H_TOTAL_l Horizontal Output Total Size
RO
0x01C2 7:3 2:0 DI_VOTS[10:8] Reserved
DI_V_TOTAL_h
RO
Vertical Output Total Size
0x01C3 7:0 DI_VOTS[7:0]
DI_V_TOTAL_l Vertical Output Total Size
RO
0x01C4 7:3 2:0 DI_HOA_STR[10:8] Reserved
DI_HOA_STR_h
RO
Horizontal Output Active Start Point
0x01C5 7:0 DI_HOA_STR[7:0]
DI_ HOA_STR _l Horizontal Output Active Start Point
RO
0x01C6 7:3 2:0 DI_HOA_END[10:8] Reserved
DI_HOA_END_h
RO
Horizontal Output Active End Point
0x01C7 7:0 DI_HOA_END[7:0]
DI_HOA_END_l Horizontal Output Active End Point
RO
53
PRELIMINARY DATASHEET
S5D2400X
0x01C8 7:3 2:0 DI_VOA_STR[10:8] Reserved
DI_VOA_STR_h
RO
Vertical Output Active Start Point
0x01C9 7:0 DI_VOA_STR[7:0]
DI_VOA_STR_l Vertical Output Active Start Point
RO
0x01CA 7:3 2:0 DI_VOA_END[10:8] Reserved
DI_VOA_END_h
RO
Vertical Output Active End Point
0x01CB 7:0 DI_VOA_END[7:0]
DI_VOA_END_l Vertical Output Active End Point
RO
54
PRELIMINARY DATASHEET
S5D2400X
6.4 IMAGE SCALING CONTROL REGISTERS Bits Register Name 0x0061 7:4 3:0 IVZOOM[19:16] Reserved Inversed Vertical Zoom Ratio ( = VIAS/VOAS ) Function SCALER_IVZOOM_h (Default: 0 x 02) R/W
0x0062 7:0 IVZOOM[15:8]
SCALER_IVZOOM_m (Default: 0 x 00) Inversed Vertical Zoom Ratio ( = VIAS/VOAS )
R/W
0x0063 7:0 IVZOOM[7:0]
SCALER_IVZOOM_l (Default: 0 x 00) Inversed Vertical Zoom Ratio ( = VIAS/VOAS )
R/W
0x0065 7:4 3:0 IHZOOM[19:16] Reserved
SCALER_IHZOOM_h (Default: 0 x 02)
R/W
Inversed Horizontal Zoom Ratio ( = HIAS/HOAS )
0x0066 7:0 IHZOOM[15:8]
SCALER_IHZOOM_m (Default: 0 x 00) Inversed Horizontal Zoom Ratio ( = HIAS/HOAS )
R/W
0x0067 7:0 IHZOOM[7:0]
SCALER_IHZOOM_l (Default: 0 x 00) Inversed Horizontal Zoom Ratio ( = HIAS/HOAS )
R/W
0x0068 7:6 5:0 HSTR_OFFSET
SCALER_HSTR_OFFSET (Default: 0 x 00) Reserved Sub-Pixel Horizontal Starting Point OFFset for Scaling - For Scale Down : HSTR_OFFSET = [ (HIAS-1) - (HOAS - 1) / Hratio ] * 16 - For Scale Up
R/W
: HSTR_OFFSET = 32 - [16 * {(2 * 3*HOAS/HIAS + HOAS - 1) / Hratio - HIAS - 1}] %32
55
PRELIMINARY DATASHEET
S5D2400X
0x0069 7:6 5:0 VSTR_OFFSET
SCALER_VSTR_OFFSET (Default: 0 x 00) Reserved Sub-Pixel Vertical Starting Point OFFset for Scaling - For Scale Down : VSTR_OFFSET = [ (VIAS-1) - (VOAS - 1) / Vratio ] * 16 - For Scale Up
R/W
: VSTR_OFFSET = 32 - [16 * {(2 * 3*VOAS/VIAS - 1 + VOAS -1) / Vratio - VIAS - 1}] %32
56
PRELIMINARY DATASHEET
S5D2400X
6.5 ADVANCED COLOR CONTRAST ENHANCEMENT (ACE) CONTROL REGISTERS Bits Register Name 0x0070 7:3 2:0 BU_HSP[10:8] Reserved BOOST UP AREA : Horizontal Start Point Function BU_H_START_h (Default: 0 x 00) R/W
0x0071 7:0 BU_HSP[7:0]
BU_H_START_l (Default: 0 x 00) BOOST UP AREA : Horizontal Start Point
R/W
0x0072 7:3 2:0 BU_VSP [10:8] Reserved
BU_V_START_h (Default: 0 x 00)
R/W
BOOST UP AREA : Vertical Start Point
0x0073 7:0 BU_VSP[7:0]
BU_V_START_l (Default: 0 x 00) BOOST UP AREA : Vertical Start Point
R/W
0x0074 7:3 2:0 BU_HEP[10:8] Reserved
BU_H_END_h (Default: 0 x 00)
R/W
BOOST UP AREA : Horizontal End Point
0x0075 7:0 BU_HEP[7:0]
BU_H_END_l (Default: 0 x 00) BOOST UP AREA : Horizontal End Point
R/W
0x0076 7:3 2:0 BU_VEP[10:8] Reserved
BU_V_END_h (Default: 0 x 00)
R/W
BOOST UP AREA : Vertical End Point
0x0077 7:0 BU_VEP[7:0]
BU_V_END_l (Default: 0 x 00) BOOST UP AREA : Vertical End Point
R/W
- BU_H/V_Start/End Point is changed when BU_VEP[7:0] is controlled.
57
PRELIMINARY DATASHEET
S5D2400X
0x0078 7 6:3 2:0 BU_SUB_HSP[10:8] SUB_ZONESEL
BU_SUB_H_START_h (Default: 0 x 00)
R/W
if (SUB_ZONESEL == 1) then BU_SUB_HSP = BU_HSP, BU_SUB_VSP = BU_VSP, BU_SUB_HEP = BU_HEP, BU_SUB_VEP = BU_VEP; Reserved BOOST UP Calculating AREA : Horizontal Start Point
0x0079 7:0 BU_SUB_HSP [7:0]
BU_SUB_H_START_l (Default: 0 x 00) BOOST UP Calculating AREA : Horizontal Start Point
R/W
0x007A 7:3 2:0 BU_SUB_VSP [10:8]
BU_SUB_V_START_h (Default: 0 x 00) Reserved BOOST UP Calculating AREA : Vertical Start Point
R/W
0x007B 7:0 BU_SUB_VSP [7:0]
BU_SUB_V_START_l (Default: 0 x 00) BOOST UP Calculating AREA : Vertical Start Point
R/W
0x007C 7:3 2:0 BU_SUB_HEP [10:8] Reserved
BU_SUB_H_END_h (Default: 0 x 00)
R/W
BOOST UP Calculating AREA : Horizontal End Point
0x007D 7:0 BU_SUB_HEP [7:0]
BU_SUB_H_END_l (Default: 0 x 00) BOOST UP Calculating AREA : Horizontal End Point
R/W
0x007E 7:3 2:0 BU_SUB_VEP [10:8] Reserved
BU_SUB_V_END_h (Default: 0 x 00)
R/W
BOOST UP Calculating AREA : Vertical End Point
0x007F 7:0 BU_SUB_VEP [7:0]
BU_SUB_V_END_l (Default: 0 x 00) BOOST UP Calculating AREA : Vertical End Point
R/W
- BU_SUB_H/V_Start/End Point is changed when BU_SUB_VEP[7:0] is controlled
58
PRELIMINARY DATASHEET
S5D2400X
0x0080 7:0 MAX_coeff
BU_MAX_COEF (Default: 0 x 00) Response time to MAX
R/W
0x0081 7:0 MIN_coeff
BU_MIN_COEF (Default: 0 x 00) Response time to MIN
R/W
0x0082 7:0 AVR_L1_coeff
BU_AVR_L1_COEF (Default: 0 x 00) AVR Response time before stretching
R/W
0x0083 7:0 AVR_coeff
BU_AVR_COEF (Default: 0 x 00) AVR Response time after stretching
R/W
0x0084 7:4 Ymax_HIGH_int
BU_MAX_THRESHOLD (Default: 0 x 00) Upper threshold for MAX : Ymax_HIGH_TH >= MAX >= Ymax_LOW_TH
R/W
3:0
Ymax_LOW_int
Lower threshold for MAX
0x0085 7:4 Ymin_HIGH_int
BU_MIN_THRESHOLD (Default: 0 x 00) Upper threshold for MIN : Ymin_HIGH_TH >= MIN >= Ymin_LOW_TH
R/W
3:0
Ymin_LOW_int
Lower threshold for MIN
0x0086 7:0 Ymax_1st_base
BU_MAX_1ST (Default: 0 x 00) The number of pixels considered as the biggest value in MAX
R/W
0x0086 7:0 Ymax_1st_base
BU_MAX_1ST (Default: 0 x 00) The number of pixels considered as the biggest value in MAX
R/W
0x0087 7:0 Ymax_2nd_ base
BU_MAX_2ND (Default: 0 x 00)
R/W
The number of pixels considered as the next biggest value in MAX When Ymax_1st_base condition is not met.
59
PRELIMINARY DATASHEET
S5D2400X
0x0088 7:0 Ymin_1st_base
BU_MIN_1ST (Default: 0 x 00) The number of pixels considered as the smallest value in MIN
R/W
0x0089 7:0 Ymin_2nd_ base
BU_MIN_2ND (Default: 0 x 00)
R/W
The number of pixels considered as the next smallest value in MIN When Ymin_1st_base condition is not met.
0x008A 7:0 AVR_L1_H
BU_AVR_L1_H (Default: 0 x 00) Adjusts the MAX value.
R/W
0x008B 7:0 AVR_L1_L
BU_AVR_L1_L (Default: 0 x 00) Adjusts the MIN value.
R/W
0x008C 7 6:1 0 ST_LEVEL BOOST_ON
BU_LEVEL (Default: 0 x 00) ON / OFF (1: ON) of stretching and boost Reserved Stretching Level (0: Low Stretch, 1: High Stretch)
R/W
0x008D 7:5 4 Ymax_Ctrl
BU_MINMAX_CONTROL (Default: 0 x 00) Reserved The method of modifying MAX : (M_MAX) 0 : Not Stretching 1 : M_MAX = 1/8 * MAX
R/W
3:1 0 Ymin_Ctrl
Reserved The method of modifying Min : (M_MIN) 0 : Not Stretching 1 : M_MIN = 1/8 * MIN
0x008E 7:2 1:0 AVR_LUT_Gain Reserved
BU_AVR_LUT_GAIN (Default: 0 x 00)
R/W
Boost gain control by AVR and LUT
60
PRELIMINARY DATASHEET
S5D2400X
0x0090 7:6 5 4:2 1:0 ITU-R.SEL RGBrate SEL_div
BU_COLOR_CONTROL (Default: 0 x 00) Reserved ITU-R BT.656 OFFset correction ON / OFF (1: ON) Color correction rate (0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1) Selects the color correction method 0 : OFF 1 : Color correction coefficient determining filter 1 2 : Color correction coefficient determining filter 2 3 : Color correction coefficient determining filter 3
R/W
0x0091 7:4 3:0 AP_GAIN
BU_APERTURE_GAIN (Default: 0 x 00) Reserved Sharpness Gain Control
R/W
0x0094 7:2 1 0 GR_MODE GR_STYLE
BU_GRAPH_CONTROL (Default: 0 x 00) Reserved BOOST UP LUT Graph ON / OFF (1: ON) BOOST UP LUT Graph Style Select (1: Bar, 0: Line)
R/W
0x0095 7:1 0 AVRrate[8] Reserved
BU_AVR_RATE_h (Default: 0 x 00)
R/W
Adjusts boost rate (No boost if the bit is 0.)
0x0096 7:0 AVRrate[7:0]
BU_AVR_RATE_l (Default: 0 x 00)
R/W
Adjusts boost rate (No boost if the bit is 0.) AVRrate[8:0] binary number. Only the first 1 bit is constant. For example, 9bits is expressed as X.xxxxxxxx. The minimum must be 0.5.
0x0097 7:6 5 4:0 AREA_ON
BU_FILTER_CONTROL (Default: 0 x 00) Reserved Boost border line including screen outer line (1: ON, 0: OFF) Reserved
R/W
61
PRELIMINARY DATASHEET
S5D2400X
6.6 GLOBAL IMAGE GAIN & OFFSET CONTROL REGISTER Bits Register Name 0x00D0 7:6 5:4 CONT_TYPE Function CONTRAST_CONTROL_TYPE (Default: 0 x 01F) Reserved Determines magnification of the contrast control area 00: 0 ~ 0.99609375, 01: 0.5 ~ 1.49609375 (Default) 10: 0 ~ 1.9921875, 11: 0 ~ 3.984375 3 ZONE_CT Zone area control type 1: Adjusts global/zone together based on global (Default) 0: Adjusts global/zone separately 2 BLACK_CT Black level control type 1: Adjusts R/G/B together based on R (Default) 0: Adjusts R/G/B separately 1 CONT_CT Contrast control type 1: Adjusts R/G/B together based on R (Default) 0: Adjusts R/G/B separately 0 BRIGHT_CT Brightness control type 1: Adjusts R/G/B together based on R (Default) 0: Adjusts R/G/B separately R/W
0x00D1 7:6 5:0 R_BLACK_global
CONTRAST_R_BLACK_global (Default: 0 x 00) Reserved
R/W
Adjusts R channel Black level. R/G/B are adjusted separately if BLACK_CT (ADDR 0x00D0[2]) is 0, and are adjusted together based on R if it is 1.
0x00D2 7:6 5:0 G_BLACK_global
CONTRAST_G_BLACK_global (Default: 0 x 00) Reserved
R/W
Adjusts G channel Black level. R/G/B are adjusted separately if BLACK_CT (ADDR 0x00D0[2]) is 0, and are adjusted together based on R if it is 1.
0x00D3 7:6 5:0 B_BLACK_global
CONTRAST_B_BLACK_global (Default: 0 x 00) Reserved
R/W
Adjusts B channel Black level. R/G/B are adjusted separately if BLACK_CT(ADDR 0x00D0[2]) is 0, and are adjusted together based on R if it is 1.
62
PRELIMINARY DATASHEET
S5D2400X
0x00D4 7:0 R_CONT_global
CONTRAST_R_CONT_global (Default: 0 x 80)
R/W
Adjusts R channel Contrast. R/G/B are adjusted separately if CONT_CT(ADDR 0x00D0[1]) is 0, and are adjusted together based on R if it is 1.
0x00D5 7:0 G_CONT_global
CONTRAST_G_CONT_global (Default: 0 x 80)
R/W
Adjusts G channel Contrast. R/G/B are adjusted separately if CONT_CT(ADDR 0x00D0[1]) is 0, and are adjusted together based on R if it is 1.
0x00D6 7:0 B_CONT_global
CONTRAST_B_CONT_global (Default: 0 x 80)
R/W
Adjusts B channel Contrast. R/G/B are adjusted separately if CONT_CT(ADDR 0x00D0[1]) is 0, and are adjusted together based on R if it is 1.
0x00D7 7:0 R_BRIGHT_global
CONTRAST_R_BRIGHT_global (Default: 0 x 00)
R/W
Adjusts R channel Brightness. R/G/B are adjusted separately if BRIGHT_CT(ADDR 0x00D0[0]) is 0, and are adjusted together based on R if it is 1.
0x00D8 7:0 G_BRIGHT_global
CONTRAST_G_BRIGHT_global (Default: 0 x 00)
R/W
Adjusts G channel Brightness. R/G/B are adjusted separately if BRIGHT_CT (ADDR 0x00D0[0]) is 0, and are adjusted together based on R if it is 1.
0x00D9 7:0 B_BRIGHT_global
CONTRAST_B_BRIGHT_global (Default: 0 x 00)
R/W
Adjusts B channel Brightness. R/G/B are adjusted separately if BRIGHT_CT (ADDR 0x00D0[0]) is 0, and are adjusted together based on R if it is 1.
0x00DA 7:6 5:0 R_BLACK_ZONE
CONTRAST_B_BLACK_ZONE (Default: 0 x 00) Reserved Adjusts R channel Black level in the boot area
R/W
63
PRELIMINARY DATASHEET
S5D2400X
0x00DB 7:6 5:0 G_BLACK_ZONE
CONTRAST_B_BLACK_ZONE (Default: 0 x 00) Reserved Adjusts G channel Black level in the boot area
R/W
0x00DC 7:6 5:0 B_BLACK_ZONE
CONTRAST_B_BLACK_ZONE (Default: 0 x 00) Reserved Adjusts B channel Black level in the boot area
R/W
0x00DD 7:0 R_CONT_ZONE
CONTRAST_R_CONT_ZONE (Default: 0 x 80) Adjusts R channel Contrast in the boot area
R/W
0x00DE 7:0 G_CONT_ZONE
CONTRAST_G_CONT_ZONE (Default: 0 x 80) Adjusts G channel Contrast in the boot area
R/W
0x00DF 7:0 B_CONT_ZONE
CONTRAST_B_CONT_ZONE (Default: 0 x 80) Adjusts B channel Contrast in the boot area
R/W
0x00E0 7:0 R_BRIGHT_ZONE
CONTRAST_R_BRIGHT_ZONE (Default: 0 x 00) Adjusts R channel Brightness in the boot area
R/W
0x00E1 7:0 G_BRIGHT_ZONE
CONTRAST_G_BRIGHT_ZONE (Default: 0 x 00) Adjusts G channel Brightness in the boot area
R/W
0x00E2 7:0 B_BRIGHT_ZONE
CONTRAST_B_BRIGHT_ZONE (Default: 0 x 00) Adjusts B channel Brightness in the boot area
R/W
0x00E3 7:6 5 BG_COLOR
CONTRAST_BG_COLOR_R (Default: 0 x 00) Reserved Enable Background Color (1: ON, 0: OFF)
R/W
- Background Color correspond to BG_COLOR_R,G,B color pallet - Highest priority in color control. 4:0 BG_COLOR_R R Channel Background Color
64
PRELIMINARY DATASHEET
S5D2400X
0x00E4 7:5 4:0 BG_COLOR_G
CONTRAST_BG_COLOR_G (Default: 0 x 00) Reserved G Channel Background Color
R/W
0x00E5 7:5 4:0 BG_COLOR_B
CONTRAST_BG_COLOR_B (Default: 0 x 10) Reserved B Channel Background Color
R/W
65
PRELIMINARY DATASHEET
S5D2400X
6.7 OSD CONTROL REGISTERS Bits Register Name 0x0100 7 6 5 4 3 OSD_EN DSRAM_CLRN FTRAM_CLRN ITENSITY CH_TONE Function OSD_CHAR_TONE (Default: 0 x 60) OSD Output Enable (1: Enable, 0: Disable) DSRAM Clear (1: No Operation, 0: Active) FONT RAM Clear (1: No Operation, 0: Active) INTENSITY Select Character half Toning : if (OSD_TONE[2] == 0 && OSD_TONE[1:0] != 0 && CH_TONE == 1) then If Half Tone (Transparency) is enabled, it is applied to the font area. OSD half Toning : 0: OSD bypass and input image are expressed. (Default) 1: Input Image and OSD are mixed at the rate of 0.25. 2: Input Image and OSD are mixed at the rate of 0.5. 3: Input Image and OSD are mixed at the rate of 0.75. 4 or higher : Only OSD is expressed without mixing with the input image. R/W
2:0
OSD_TONE
0x0101 7:6 CH_HSZ
OSD_FONT_SIZE (Default: 0 x 00)
R/W
Determines, based on the font size (12 x 18), the magnifying rate of the character horizontal size. - For example, if CH_HSZ is set to 1, the horizontal size of the character becomes 12 x 2 Pixel. (00: 12 x 1, 01: 12 x 2, 10: 12 x 3, 11: 12 x 4)
5:4
CH_VSZ
Determines, based on the font size (12 x 18), the magnifying rate of the character vertical size. - For example, if CH_VSZ is set to 3, the vertical size of the character becomes 18 x 4 Pixel. (00: 18 x 1, 01: 18 x 2, 10: 18 x 3, 11: 18 x 4)
3:0
ROW_SP
Controls the number of row spaces between the upper and lower fonts. The row space is expressed in interworking with vertical pixels in accordance with the character vertical size. - For example, if ROW_SP is 2 and CH_VSZ is 2, the row space is 6 lines.
66
PRELIMINARY DATASHEET
S5D2400X
0x0102 7:6 5:0 OSD_HFONT Reserved
OSD_HFONT (Default: 0 x 00)
R/W
The number of horizontal fonts of OSD - If OSD_HFONT is 30, the number of horizontal fonts of OSD is 30.
0x0103 7:6 5:0 OSD_VFONT Reserved
OSD_VFONT (Default: 0 x 00)
R/W
The number of vertical fonts of OSD. - If OSD_VFONT is 15, the number of vertical fonts of OSD is 15.
0x0104 7:3 2:0 OSD_HSP[10:8] Reserved
OSD_HSP_h (Default: 0 x 00)
R/W
Sets the horizontal start point of OSD. - If W_BDSH_EN is 1, and if OSD_HSP is lower than 6 as W_BDSH is 1, OSD_HSP is 6.
0x0105 7:0 OSD_HSP[7:0]
OSD_HSP_l (Default: 0 x 00) Sets the horizontal start point of OSD.
R/W
0x0106 7:3 2:0 OSD_VSP[10:8] Reserved
OSD_VSP_h (Default: 0 x 00)
R/W
Sets Vertical Start Point of OSD. - If W_BDSH_EN is 1, and OSD_VSP is lower than 6 as W_BDSH is 1, OSD_VSP is 6.
0x0107 7:0 OSD_VSP[7:0]
OSD_VSP_l (Default: 0 x 00) Sets the vertical start point of OSD.
R/W
67
PRELIMINARY DATASHEET
S5D2400X
0x0108 7:5 4 W_BDSH_EN
OSD_BORDER_SHADOW (Default: 0 x 00) Reserved Controls OSD Main Window Border / Shadow Enable 1: Enables OSD Main Window Border / shadow
R/W
0: OSD Main Window Border / shadow is disappeared regardless of W_BDSH 3 W_BDSH Border and shadow of OSD window is determined by setting W_BDSH to o or 1 as W_BDSH_EN(ADDR 0x0108[4]) is 1. (1: OSD Main Window Bordering, 0: OSD Main Window Shadow) 2 MW_BDSH_EN Controls border / shadow enable of multiple windows. 1: Enables OSD Multiple Windows Border / shadow 0: Multiple Window Border / shadow is disappeared regardless of MW_BDSH 1 MW_BDSH Border and shadow of OSD window is determined by setting MW_BDSH to 0 or 1 as MW_BDSH_EN(ADDR 0x0108[2]) is 1. (1: OSD Multiple Window Bordering, 0: OSD Multiple Window Shadow) 0 CH_BDSH_EN Controls Character Border/Shadow Enable 1: Character border if DSRAM[15] is 1, and Character shadow if 0 0: Border / Shadow are disabled regardless of DSRAM[15].
0x0109 7:4 3 W1_EN Reserved
OSD_MW_ENABLE (Default: 0 x 00)
R/W
Multiple Windows 1 Enable Control 1: LUT color of W1C is expressed in Multiple Windows 1 0: Multiple windows 1 is disabled.
2
W2_EN
Multiple Windows 2 Enable Control. 1: LUT color of W2C is expressed in Multiple Windows 2 0: Multiple windows 2 is disabled.
1
W3_EN
Multiple Windows 3 Enable Control. 1: LUT color of W3C is expressed in Multiple Windows 3 0: Multiple windows 3 is disabled.
0
W4_EN
Multiple Windows 4 Enable Control. 1: LUT color of W4C is expressed in Multiple Windows 4 0: Multiple windows 4 is disabled.
68
PRELIMINARY DATASHEET
S5D2400X
0x010A 7:6 W1_PRT
OSD_MW_PRIORITY (Default: 0 x 00) Sets priority of W1 in 4 Multiple Windows
R/W
- The priority order is W1, W2, W3 and W4 if the same priority is given. (0: Highest Priority, 1: 2nd Priority, 2: 3rd Priority, 2: 4th Priority) 5:4 W2_PRT Sets priority of W2 in 4 Multiple Windows - The priority order is W1, W2, W3 and W4 if the same priority is given. (0: Highest Priority, 1: 2nd Priority, 2: 3rd Priority, 2: 4th Priority) 3:2 W3_PRT Sets priority of W3 in 4 Multiple Windows - The priority order is W1, W2, W3 and W4 if the same priority is given. (0: Highest Priority, 1: 2nd Priority, 2: 3rd Priority, 2: 4th Priority) 1:0 W4_PRT Sets priority of W4 in 4 Multiple Windows - The priority order is W1, W2, W3 and W4 if the same priority is given. (0: Highest Priority, 1: 2nd Priority, 2: 3rd Priority, 2: 4th Priority)
0x010B 7:6 5:4 WSH_C Reserved
OSD_BDSH_COLOR (Default: 0 x 00)
R/W
Selects shadow color of OSD Main/ Multiple windows 0: LUT12[3:0] is applied to Windows Shadow Color 1: LUT13[3:0] is applied to Windows Shadow Color 2: LUT14[3:0] is applied to Windows Shadow Color 3: LUT15[3:0] is applied to Windows Shadow Color
3:0
CH_BSC
Selects Character Border / Shadow Color as CH_BDSH_EN (ADDR 0x0108[0] is 1. You can select from LUT0 to LUT15 in this way. 0: LUT0[7:4] is used as the Border / Shadow Color of the character 1: LUT1[7:4] is used as Border / Shadow Color of the character 2: LUT2[7:4] is used as Border / Shadow Color of the character 3: LUT3[7:4] is used as Border / Shadow Color of the character
69
PRELIMINARY DATASHEET
S5D2400X
0x010C 7:6 5:4 WSH_SZ
OSD_SHADOW_SIZE_MCF (Default: 0 x 00) Reserved
R/W
3:0
N_MCF
Controls the window shadow size as W_BDSH_EN (ADDR 0x0108[4]) is 1 and W_BDSH(ADDR 0x0108[3]) is 0. 0. Horizontal/vertical shadow size of the OSD main window is 1 pixel in both horizontal and vertical. 1. Horizontal/vertical shadow size of the OSD main window is 2 pixel in both horizontal and vertical. 2. Horizontal/vertical shadow size of the OSD main window is 3 pixel in both horizontal and vertical. 3. Horizontal/vertical shadow size of the OSD main window is 4 pixel in both horizontal and vertical. Controls the window shadow size as MW_BDSH_EN (ADDR 0x0108[2]) is 1 and MW_BDSH(ADDR 0x0108[1]) is 0. Horizontal/vertical shadow size of the multiple windows are the same as OSD main window. Number of Multi-Colored RAM Font - Up to 9 multi color fonts are available out of 28 RAM fonts. When considering R/G/B, Up to 27 fonts (9x3) are available, and single color font is used for the remaining 1 font. If 4 MCFs are used, 4*3 = 12 fonts out of 28 RAM fonts are used for MCF, and remaining 16 fonts can be used for SF.
0x010D 7:5 4:2 BLNK_SEL
OSD_BLINK_CONTROL (Default: 0 x 00) Reserved Blink duty Select: 0: 1: 2: 3: 4: 5: 6: OFF 32 Frame (about 0.5sec) / ON 32 Frame (about 0.5sec) OFF 64 Frame (about 1sec) / ON 32 Frame (about 0.5sec) OFF 32 Frame (about 0.5sec) / ON 64 Frame (about 1sec) OFF 64Frame (about 1sec) / ON 64 Frame (about 1sec) OFF 96 Frame (about 1.5sec) / ON 96Frame (about 1.5sec) OFF 128 Frame (about 2sec) / ON 64 Frame (about 1sec) OFF 64 Frame (about 1sec) / ON 128 Frame (about 2sec)
R/W
7: OFF 128 Frame (about 2sec) / ON 128 Frame (about 2sec) 1 BL_NTRA Blink or No_Tone_Raster: 1: If Display RAM[14] is 1, Blink according to BLNK_SEL 0: If Display RAM[14] is 0, half tone is not applied to the raster part. In this case, border/shadow of character is disabled. 0 BLNK_C Blink Color inversion: 1: If Blink is OFF, the complementary color of Raster is displayed in the character part. 0: If Blink is OFF, the Raster color is displayed in the character part.
70
PRELIMINARY DATASHEET
S5D2400X
0x010E 7:4 W1C
OSD_W1_W2_COLOR (Default: 0 x 00) Multiple Windows 1 Color.
R/W
- If W1_EN (ADDR 0x0109[3]) is 1 and n(0~15) is selected for W1C, LUTn[3:0] is assigned for Multiple Windows 1. For example, if W1C is 7 then LUT7[3:0] is assigned for the color of windows multiple windows 1. 3:0 W2C Multiple Windows 2 Color. - If W2_EN (ADDR 0x0109[2]) is 1 and n(0~15) is selected for W2C, LUTn[3:0] is assigned for Multiple Windows 2.
0x010F 7:4 W3C
OSD_W3_W4_COLOR (Default: 0 x 00) Multiple Windows 3 Color.
R/W
- If W3_EN (ADDR 0x0109[1]) is 1 and n(0~15) is selected for W3C, LUTn[3:0] is assigned for Multiple Windows 3. 3:0 W4C Multiple Windows 4 Color. - If W4_EN (ADDR 0x0109[0]) is 1 and n(0~15) is selected for W4C, LUTn[3:0] is assigned for Multiple Windows 4.
0x0110 7:5 4:0 W1R_STR
OSD_W1_ROW_STR (Default: 0 x 00) Reserved Row Start position (1(not 0) ~ 31) of Multiple Windows 1 - If the bit is 1, y of the start (x, y) of Multiple Windows 1 is 1
R/W
0x0111 7:5 4:0 W1R_END
OSD_W1_ROW_END (Default: 0 x 00) Reserved Row End position (1(not 0) ~ 31) of Multiple Windows 1 - If the bit is 2, y of the end (x, y) of Multiple Windows 1 is 2
R/W
0x0112 7:6 5:0 W1C_STR
OSD_W1_COLUMN_STR (Default: 0 x 00) Reserved Column Start position (1(not 0) ~ 63) of Multiple Windows 1 - If the bit is 1, x of the start (x, y) of Multiple Windows 1 is 1
R/W
0x0113 7:6 5:0 W1C_END
OSD_W1_COLUMN_END (Default: 0 x 00) Reserved Column End position (1(not 0) ~ 63) of Multiple Windows 1 - If the bit is 2, x of the end (x, y) of Multiple Windows 1 is 2
R/W
71
PRELIMINARY DATASHEET
S5D2400X
0x0114 7:5 4:0 W2R_STR
OSD_W2_ROW_STR (Default: 0 x 00) Reserved Row Start position (1(not 0) ~ 31) of Multiple Windows 2 - If the bit is 1, y of the start (x, y) of Multiple Windows 2 is 1
R/W
0x0115 7:5 4:0 W2R_END
OSD_W2_ROW_END (Default: 0 x 00) Reserved Row End position (1(not 0) ~ 31) of Multiple Windows 2 - If the bit is 2, y of the end (x, y) of Multiple Windows 2 is 2
R/W
0x0116 7:6 5:0 W2C_STR
OSD_W2_COLUMN_STR (Default: 0 x 00) Reserved Column Start position (1(not 0) ~ 63) of Multiple Windows 2 - If the bit is 1, x of the start (x, y) of Multiple Windows 2 is 1
R/W
0x0117 7:6 5:0 W2C_END
OSD_W2_COLUMN_END (Default: 0 x 00) Reserved Column End position (1(not 0) ~ 63) of Multiple Windows 2 - If the bit is 2, x of the end (x, y) of Multiple Windows 2 is 2
R/W
0x0118 7:5 4:0 W3R_STR
OSD_W3_ROW_STR (Default: 0 x 00) Reserved Row Start position (1(not 0) ~ 31) of Multiple Windows 3 - If the bit is 1, y of the start (x, y) of Multiple Windows 3 is 1
R/W
0x0119 7:5 4:0 W3R_END
OSD_W3_ROW_END (Default: 0 x 00) Reserved Row End position (1(not 0) ~ 31) of Multiple Windows 3 - If the bit is 2, y of the end (x, y) of Multiple Windows 3 is 2
R/W
0x011A 7:6 5:0 W3C_STR
OSD_W3_COLUMN_STR (Default: 0 x 00) Reserved Column Start position (1(not 0) ~ 63) of Multiple Windows 3 - If the bit is 1, x of the start (x, y) of Multiple Windows 3 is 1
R/W
72
PRELIMINARY DATASHEET
S5D2400X
0x011B 7:6 5:0 W3C_END
OSD_W3_COLUMN_END (Default: 0 x 00) Reserved Column End position (1(not 0) ~ 63) of Multiple Windows 3 - If the bit is 2, x of the start (x, y) of Multiple Windows 3 is 2
R/W
0x011C 7:5 4:0 W4R_STR
OSD_W4_ROW_STR (Default: 0 x 00) Reserved Row Start position (1(not 0) ~ 31) of Multiple Windows 4 - If the bit is 1, y of the start (x, y) of Multiple Windows 4 is 1
R/W
0x011D 7:5 4:0 W4R_END
OSD_W4_ROW_END (Default: 0 x 00) Reserved Row End position (1(not 0) ~ 31) of Multiple Windows 4 - If the bit is 2, y of the end (x, y) of Multiple Windows 4 is 2
R/W
0x011E 7:6 5:0 W4C_STR
OSD_W4_COLUMN_STR (Default: 0 x 00) Reserved Column Start position (1(not 0) ~ 63) of Multiple Windows 4 - If the bit is 1, x of the start (x, y) of Multiple Windows 4 is 1
R/W
0x011F 7:6 5:0 W4C_END
OSD_W4_COLUMN_END (Default: 0 x 00) Reserved Column End position (1(not 0) ~ 63) of Multiple Windows 4 - If the bit is 2, x of the end (x, y) of Multiple Windows 4 is 2
R/W
0x0120 7:0 LUT0
OSD_LUT0 (Default: 0 x 00) Look Up Table 0 (LUT0[7:4]: Font Character Color (7: R, 6: G, 5: G, 4: B) LUT0[3:0]: Raster Font Color (3: R, 2: G, 1: G, 0: B))
R/W
0x0121 7:0 LUT1
OSD_LUT1 (Default: 0 x 00) Look Up Table 1 (LUT1[7:4]: Font Character Color, LUT1[3:0]: Font Raster Color)
R/W
73
PRELIMINARY DATASHEET
S5D2400X
0x0122 7:0 LUT2
OSD_LUT2 (Default: 0 x 00) Look Up Table 2 (LUT2[7:4]: Font Character Color, LUT2[3:0]: Font Raster Color)
R/W
0x0123 7:0 LUT3
OSD_LUT3 (Default: 0 x 00) Look Up Table 3 (LUT3[7:4]: Font Character Color, LUT3[3:0]: Font Raster Color)
R/W
0x0124 7:0 LUT4
OSD_LUT4 (Default: 0 x 00) Look Up Table 4 (LUT4[7:4]: Font Character Color, LUT4[3:0]: Font Raster Color)
R/W
0x0125 7:0 LUT5
OSD_LUT5 (Default: 0 x 00) Look Up Table 5 (LUT5[7:4]: Font Character Color, LUT5[3:0]: Font Raster Color)
R/W
0x0126 7:0 LUT6
OSD_LUT6 (Default: 0 x 00) Look Up Table 6 (LUT6[7:4]: Font Character Color, LUT6[3:0]: Font Raster Color)
R/W
0x0127 7:0 LUT7
OSD_LUT7 (Default: 0 x 00) Look Up Table 7 (LUT7[7:4]: Font Character Color, LUT7[3:0]: Font Raster Color)
R/W
0x0128 7:0 LUT8
OSD_LUT8 (Default: 0 x 00) Look Up Table 8 (LUT8[7:4]: Font Character Color, LUT8[3:0]: Font Raster Color)
R/W
0x0129 7:0 LUT9
OSD_LUT9 (Default: 0 x 00) Look Up Table 9 (LUT9[7:4]: Font Character Color, LUT9[3:0]: Font Raster Color)
R/W
74
PRELIMINARY DATASHEET
S5D2400X
0x012A 7:0 LUT10
OSD_LUT10 (Default: 0 x 00) Look Up Table 10
R/W
(LUT10[7:4]: Font Character Color, LUT10[3:0]: Font Raster Color)
0x012B 7:0 LUT11
OSD_LUT11 (Default: 0 x 00) Look Up Table 11
R/W
(LUT11[7:4]: Font Character Color, LUT11[3:0]: Font Raster Color)
0x012C 7:0 LUT12
OSD_LUT12 (Default: 0 x 00) Look Up Table 12
R/W
(LUT12[7:4]: Font Character Color, LUT12[3:0]: Font Raster Color)
0x012D 7:0 LUT13
OSD_LUT13 (Default: 0 x 00) Look Up Table 13
R/W
(LUT13[7:4]: Font Character Color, LUT13[3:0]: Font Raster Color)
0x012E 7:0 LUT14
OSD_LUT14 (Default: 0 x 00) Look Up Table 14
R/W
(LUT14[7:4]: Font Character Color, LUT14[3:0]: Font Raster Color)
0x012F 7:0 LUT15
OSD_LUT15 (Default: 0 x 00) Look Up Table 15
R/W
(LUT15[7:4]: Font Character Color, LUT15[3:0]: Font Raster Color)
0x43EF 7:6 0 FTRAM_EN Reserved
FONT_RAM_EN
R/W
FONT RAM Enable (1: Enable, 0: Disable) Writes data on the FONT RAM, and enables it.
75
PRELIMINARY DATASHEET
S5D2400X
6.8 GAMMA CORRECTION CONTROL REGISTER Bits Register Name 0x0150 : 0x016F 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 RYAV1 RYAV2 RYAV3 RYAV4 RYAV5 RYAV6 RYAV7 RYAV8 RYAV9 RYAV10 RYAV11 RYAV12 RYAV13 RYAV14 RYAV15 RYAV16 RYAV17 RYAV18 RYAV19 RYAV20 RYAV21 RYAV22 RYAV23 RYAV24 RYAV25 RYAV26 RYAV27 RYAV28 RYAV29 RYAV30 RYAV31 RYAV32
0 8 16 24 32 . . . . . . . . . . 240, 248, 255 RYAV4 RYAV3 RYAV2 RYAV1 X RYAV30 RYAV32 RYAV31 Y
Function GAM_R_LUT_1_2 : GAM_R_LUT_31_32 RED Output (Y) Axis Value for Input (X) Axis Value 8, 16, 24, 32, . . . , 240, 248, 255
Default R/W : R/W 8'h08 8'h10 8'h18 8'h20 8'h28 8'h30 8'h38 8'h40 8'h48 8'h50 8'h58 8'h60 8'h68 8'h70 8'h78 8'h80 8'h88 8'h90 8'h98 8'hA0 8'hA8 8'hB0 8'hB8 8'hC0 8'hC8 8'hD0 8'hD8 8'hE0 8'hE8 8'hF0 8'hF8 8'hFF
76
PRELIMINARY DATASHEET
S5D2400X
Bits
Register Name 0x0170 : 0x018F
Function GAM_G_LUT_1_2 : GAM_G_LUT_31_32 GREEN Output (Y) Axis Value for Input (X) Axis Value 8, 16, 24, 32, . . . , 240, 248, 255
Default R/W : R/W 8'h08 8'h10 8'h18 8'h20 8'h28 8'h30 8'h38 8'h40 8'h48 8'h50 8'h58 8'h60 8'h68 8'h70 8'h78 8'h80 8'h88 8'h90
X
7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0
GYAV1 GYAV2 GYAV3 GYAV4 GYAV5 GYAV6 GYAV7 GYAV8 GYAV9 GYAV10 GYAV11 GYAV12 GYAV13 GYAV14 GYAV15 GYAV16 GYAV17 GYAV18 GYAV19 GYAV20 GYAV21 GYAV22 GYAV23 GYAV24 GYAV25 GYAV26 GYAV27 GYAV28 GYAV29 GYAV300 GYAV31 GYAV32
Y GYAV32 GYAV31 GYAV30
GYAV4 GYAV3 GYAV2 GYAV1
0
8
16
24
32
. . . . . . . . . . 240, 248, 255
8'h98 8'hA0 8'hA8 8'hB0 8'hB8 8'hC0 8'hC8 8'hD0 8'hD8 8'hE0 8'hE8 8'hF0 8'hF8 8'hFF
77
PRELIMINARY DATASHEET
S5D2400X
Bits
Register Name 0x0190 : 0x01AF
Function GAM_B_LUT_1_2 : GAM_B_LUT_31_32 BLUE Output (Y) Axis Value for Input (X) Axis Value 8, 16, 24, 32, . . . , 240, 248, 255
Default R/W : R/W 8'h08 8'h10 8'h18 8'h20 8'h28 8'h30 8'h38 8'h40 8'h48 8'h50 8'h58 8'h60 8'h68 8'h70 8'h78 8'h80 8'h88 8'h90
X
7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0 7:0
BYAV1 BYAV2 BYAV3 BYAV4 BYAV5 BYAV6 BYAV7 BYAV8 BYAV9 BYAV10 BYAV11 BYAV12 BYAV13 BYAV14 BYAV15 BYAV16 BYAV17 BYAV18 BYAV19 BYAV20 BYAV21 BYAV22 BYAV23 BYAV24 BYAV25 BYAV26 BYAV27 BYAV28 BYAV29 BYAV30 BYAV31 BYAV32
Y BYAV32 BYAV31 BYAV30
BYAV4 BYAV3 BYAV2 BYAV1
0
8
16
24
32
. . . . . . . . . . 240, 248, 255
8'h98 8'hA0 8'hA8 8'hB0 8'hB8 8'hC0 8'hC8 8'hD0 8'hD8 8'hE0 8'hE8 8'hF0 8'hF8 8'hFF
78
PRELIMINARY DATASHEET
S5D2400X
6.9 OSD RAM CONTROL REGISTERS Address 0x1000 ~ 0x10FF 0x2000 ~ 0x2383 0x3FFF ~ 0x43EE 0x43EF Bits 7:0 Register Name BU_LUT ACCE Look Up Table Function
15:0
OSD_DSPRAM
Display RAM ( 450 x 16 bits ) for OSD
11:0
OSD_FONTRAM
Font RAM for OSD, 28 Fonts ( 1Fonts = 18 x 12 bits )
0
FTRAM_EN
FONT RAM Enable (1: Enable, 0: Disable) Writes data on the FONT RAM, and enables it.
79
PRELIMINARY DATASHEET
S5D2400X
7 ELECTRICAL SPECIFICATION
7.1 ABSOLUTE MAXIMUM RATINGS Table 8. Absolute Maximum Ratings Characteristics DC Supply Voltage Symbol VDD 1.8V VDD 3.3V VDD DC Input Voltage VIN 3.3V input buffer 3.3V interface / 5V tolerant input buffer DC Output Voltage VOUT 3.3V output buffer 1.8V interface / 3.3V tolerant output buffer Latch Up Current Storage temperature ILatch TSTG 100 Plastic - 65 to 150 Rating 2.7 3.8 3.8 6.5 2.7 3.8 mA C Unit V
7.2 RECOMMENDED OPERATION CONDITIONS Table 9. Recommended Operating Conditions Characteristics DC Supply Voltage Symbol VDD 1.8V VDD 3.3V VDD DC Input Voltage VIN 3.3V input buffer 3.3V interface / 5V tolerant input buffer DC Output Voltage VOUT 3.3V output buffer 1.8V interface / 3.3V tolerant output buffer Operating Temperature TA Commercial Rating 1.8 0.15 3.3 0.3 3.3 0.3 3.0 ~ 5.25 3.3 0.3 1.8 0.15 0 to 70 C Unit V
80
PRELIMINARY DATASHEET
S5D2400X
7.3 DC ELECTRICAL CHARACTERISTICS VDD1 = 3.3V 0.3V, VDD2 = VDDA = 1.8V 0.15V, TA = 25C Table 10. DC Electrical Characteristics at 3.3V Item Supply Digital Power 1 Symbol VDD VDD1 VDD2 VDDA VIH VIL VOH IOH = -2mA IOH = -4mA IOH = -20mA Low Level VOL IOL = 2mA IOL = 4mA IOL = 20mA Schmitt Positive-going threshold Trigger Input Current Negative-going threshold High Level Input buffer Input buffer with Pull-down IIL IOZ Pd *2 : Pin 21, 57, 94 *5 : Pin 58, 59, 60 *7 : Pin 72 VIN = VSS VOUT = VSS or VDD VT+ VTIIH CMOS CMOS VIN = VDD 0.8 -10 10 33 10 60 2.4 2.4 2.4 0.4 0.4 0.4 2.0 Condition Min 3.0 1.65 1.65 2.0 0.8 Typ 3.3 1.8 1.8 Max 3.6 1.95 1.95 Unit V V V V V V V V V V V V V A A *9 *10 *5 *6 *7 *5 *6 *7 *8 Remark *1 *2 *3 *4
Voltage Digital Power 2 Analog Power Input High Level
Voltage Low Level Output Voltage High Level
Low Level Input buffer Tri-state Output Leakage Current Power Consumption [Remark] *1 : Pin 10, 39, 76 *4 : All Input Pins
-10 -10
10 10 900 *3 : Pin 15, 19
A A mW
*9 *11
*6 : Pin 1~2, 8, 31~38, 40~47, 49~56, 73~75, 77~84, 86~93, 95~100 *8 : Pin 6~9, 61~65 *9 : Pin 6~9, 11, 20, 22~29, 61~65, 67~68
*10 : Pin 4~5, 31~38, 40~47, 49~56, 69~71 *11 : Pin 1~2, 31~38, 40~47, 49~56, 77~84, 86~93, 95~100
81
PRELIMINARY DATASHEET
S5D2400X
7.4 AC ELECTRICAL CHARACTERISTICS 7.4.1 Video Input Timing Characteristics
TV (= 1 / F V) TVH VCK TVL
TSU VI0 - 7, RI0 - 7, GI0 - 7, BI0 - 7, GHS, GVS, FLD Valid Data
THD Valid Data Valid Data
Item Setup Time to VCK, input VI0~7, RIO0~7, GIO0~7, BIO0~7, GHS, GVS, FLD Hold Time to VCK, input VI0~7, RIO0~7, GIO0~7, BIO0~7, GHS, GVS, FLD Input Frequency Input High Duration Time Input Low Duration Time
Symbol TSU
Min 2.0
Typ
Max
Units ns
THD
2.0
ns
FV TVH TVL 3.0 3.0
90
MHz ns ns
82
PRELIMINARY DATASHEET
S5D2400X
7.4.2 Display Output Timing Characteristics
TD (= 1 / F D)
PCKO (PCKO_PHASE[2] = 0)
PCKO (PCKO_PHASE[2] = 1)
90% 10% Tr Tf TPD
TPD RO0~7, GO0~7, BO0~7, PHSO, PVSO, PDEN
Valid Data
Valid Data
Item Propagation Delay Time from PCKO, Output RO0~7, GO0~7, BO0~7, PHSO, PVSO, PDEN Frequency, Output Display Clock PCKO Duty Cycle, Output Display Clock PCKO Rise Time, Output Display Clock PCKO Fall Time, Output Display Clock PCKO
Symbol TPD
Min -3
Typ 0
Max 3
Units ns
FD Cduty Tr Tf 45 50
100 55 3 3
MHz % ns ns
83
PRELIMINARY DATASHEET
S5D2400X
8 PACKAGE DIMENSION
8.1 100-TQFP-1414
16.00 BSC 14.00 0-7 0.09 - 0.20
16.00 BSC
14.00
0.08 MAX
#100
#1 0.50
0.17 - 0.27 0.08 MAX 0.05 - 0.15 (1.00) 1.00 + 0.05 1.20 MAX
NOTE : Dimensions are in millimeters.
84
0.60 + 0.15
PRELIMINARY DATASHEET
S5D2400X
9 FONTS
85
PRELIMINARY DATASHEET
S5D2400X
86
PRELIMINARY DATASHEET
S5D2400X
87
PRELIMINARY DATASHEET
S5D2400X
88
PRELIMINARY DATASHEET
S5D2400X
89
PRELIMINARY DATASHEET
S5D2400X
90
PRELIMINARY DATASHEET
S5D2400X
91
PRELIMINARY DATASHEET
S5D2400X
92


▲Up To Search▲   

 
Price & Availability of S5D2400X

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X